
A Policy Enforcement Framework for Ubiquitous

Computing Applications

Ioannis Panagiotopoulos, Lambrini Seremeti, Achilles Kameas

School of Science and Technology

Hellenic Open University

Patras, Greece

giannis.panagiotopoulos@gmail.com, seremeti@cti.gr, kameas@eap.gr

Abstract—Future ubiquitous computing environments integrate

the services of everyday objects equipped with tiny processors

and sensors into distributed applications. These smart devices

can communicate with each other and also explore their

environment. In order for the applications to function properly,

policies need to be defined, which determine ways that they can

be used, protected, changed, etc. A policy can be considered as a

set of rules, specified by users, which are usually applied by a

policy manager. In this paper we proposed an alternative

approach, which supports the adoption of policies directly by the

applications without the need of an enforcing policy manager.

Two everyday scenarios are used as examples that demonstrate

the validity of the approach.

Ontology; Policy; Ubiquitous computing; Ontology alignment;

Protégé; Alignment API; Jena

I. INTRODUCTION

Nowadays, tiny embedded processors are found in
everyday items including mobile phones, TV’s, cooking
appliances, washing machines etc, while many of them can be
connected to the Internet. In the near future, networking and
communication capabilities will be integrated at low cost,
giving them the ability to collaborate with each other and also
explore their environment [1]. Ubiquitous computing
applications are defined, which orchestrate the services offered
by these devices; then, the smart devices are regarded as
resources of a Next Generation Ambient Intelligence
Environment (NGAIE) [2]. One of the main problems detected
for NGAIEs is the heterogeneity of the constituent resources.

One proposed approach to deal with the heterogeneity of
the ubiquitous computing environments resources is to use
ontologies to model the state, knowledge and services of the
resources and the policies that apply to the environment or the
applications they are found in. Ontologies permit the clear
definition and explicit specification of the basic concepts of a
concrete field, thus facilitating communication and
interoperation between heterogeneous entities (such as humans,
services or software agents). Thus ontologies are considered as
an important tool for the successful implementation of
ubiquitous computing applications.

Policies are also used in ubiquitous computing systems to
determine ways that these applications can be used, protected,

changed, etc. In general, policies are considered as sets of high-
level rules which describe the way a system or an application
should behave under different circumstances. There are many
types of policies, such as access control policies, which control
the permissions of the users over a resource, privacy policies,
which define the privacy boundaries and protection
mechanisms, interaction policies, which specify how a user can
interact with an application, etc. In this paper, we concentrate
on the realization of policies that control the operation of smart
devices within a specific ubiquitous computing application. We
describe a framework that enables a user to model the features
of the application and use them to define his/her own policies,
which can then directly be applied to the resources that
compose the application he/she owns or uses. The innovation
of the proposed approach is that policies can be applied directly
by the application manager, without the need (and cost) of
extra software (i.e. a dedicated policy manager).

The rest of the paper is structured in the following way. In
section II is discussed the work related to policy management
in ubiquitous computing applications and the justification of
the proposed methodology. Section III presents the two
scenarios used to demonstrate the proposed framework. In
section IV, the basic steps of the proposed policy specification
methodology are developed and in section V these steps are
implemented to the abovementioned scenarios. Lastly, section
VI discusses the conclusions of the presented research.

II. RELATED WORK

Several efforts have addressed the issue of policy
management in ubiquitous computing environments.

In CASA [3] the authors proposed a secure architecture for
context-aware environments. They focus on defining a security
middleware to provide flexible access control and policy
management. A security management service is responsible for
managing and storing policies defined by the domain
administrator. The policy manager provides the interface for
the definition of policies, which are encoded in XML and
stored in a policy repository.

KAoS [4] is a policy language with support for the
specification, management and enforcement of policies. The
policies are represented through ontologies in DAML

Draf
t

(http://www.daml.org). KAoS services and tools provide
software components, people, resources and other entities the
capability to be semantically described and structured into
organizations of domains. While initially oriented to the
requirements of software agent applications, the services have
been adapted to web services environments also. It has a
graphical tool called KAoS Policy Administration Tool
(KPAT) that helps users in the specification, revision and
application of policies. Guards (software agents) are
responsible for policy enforcement within the computational
environment, while Enforcers are the mechanism by which
Guards ensure compliance with authorization policies.

Rei [5] is another language for expressing policies. It is a
highly expressive policy specification language well suited for
describing security policies in pervasive environments. Rei
defines a policy as a set of rules describing concepts like
permission, prohibition, obligation and dispensation over all
possible actions within the environment. Rei’s policy engine
reasons over policies described in Rei language, and uses the
policies and the domain knowledge to make security decisions
about access right and obligations.

Patwardhan et al. [6] proposed a security infrastructure that
uses Rei to define security policies and use policy enforcement
mechanisms on the mobile devices in order to eliminate the
possible threats posed to the device. According to the proposed
architecture, a policy engine reasons over the policies described
in Rei and grants or denies access to requests made by
individuals in the domain. Then the policy server presents the
policy engine the state information of the device in question
(location, identifier and person in possession) and consults the
engine to create a new policy certificate with the granted
requests. The policy manager is responsible for retrieving
policies from the policy server, while the policy enforcer is the
access mediator located on the device. It is responsible for
enforcing the current policy that has been verified to be issued
by a trusted resource.

Jiang et al. [7], proposed a middleware which provides the
services to the user in order to define security policies that
reflect dynamic context. They defined three kind of policies
used in the policy management service: authorization policy,
delegation policy and obligation policy. The policy manager
provides the interface for the administrator to define the
policies. The policies are encoded in XML and are stored in a
policy repository.

 FOCALE [8] is an autonomic architecture for managing
context-aware services, such as those required by ubiquitous
computing applications. This architecture uses a context-aware
policy model [9] that can generate ontologies to govern
behavior. This policy model is connected to another context
model, so that policies that use resources or services can sense
the context changes. When the context changes, causes policies
to change and thus the functionality offered by the entity (e.g.
device). The context manager locates the changes of the state
related with the context and the policy management system
selects a set of policies that should be loaded and activated
based on the current context.

Almuhaideb et al. [10] proposed a ubiquitous access model
to provide the mobile users with a flexible authentication

method to access foreign network services, for example when
they travel. The design of this model is based on two tokens, an
authentication token and an authorization token. Trust and
negotiation are two essential components for the cooperation
between entities in ubiquitous computing environments. The
engaging entities use policies to govern trust and negotiation. A
policy manager contains the rules (policies) defined by each
party according to their interests, before the negotiation
between them. The policies defined are trust, authorization,
identification and policies concerning features like quality of
service and security.

Some of these approaches focus on access control and
authentication for ubiquitous computing applications but all of
them make use of a policy manager as a mediator between the
user and the system. The proposed approach on the other hand,
offers a more generic schema where users define their own
preferences for the function of the devices. Moreover all the
above approaches use a policy manager to control the
definition, storing and enforcement of all the policies defined
by the user/system administrator. In the proposed framework
policies are stored on the devices and not in a policy repository.
It is a user-centric approach because user defines and manages
his/her preferences by applying them directly to the devices,
without a middleware manager.

III. SCENARIOS

To illustrate how policies could be applied without a
specific policy component, two everyday scenarios will be
used:

A. 1
st
 Scenario

Suki is in his smart home. He wants to wash a few clothing
items but he is not sure about the way the clothes can be
washed properly. So his is checking the internet through his
PDA about basic washing instructions, which subsequently, he
encodes as policies directly to his smart washing machine
through an interface which his machine is equipped with.
These policies mainly describe incompatibilities between color
and texture, which have to be taken into account, so as not to
damage the clothes during washing. A washing policy for
example can indicate that “colored and white clothing items
cannot be washed together” or “a woolen clothing item cannot
be washed together with a cotton clothing item”. The washing
machine can identify the color and the texture of the clothes via
embedded RFID tags, and can decides whether it is safe to
wash a specific combination of clothing items.

B. 2
nd
 Scenario

This time Suki wants to iron the clothes that were washed in
the previous scenario, but he is not sure about the right use of
the iron, especially regarding temperature. He consults again
his PDA for ironing instructions and uses them to define
ironing policies to his smart iron. The iron through an RFID
reader recognizes the texture of the clothes and notifies Suki of
policy conflicts related to the ironing service. An example of
such policy is that “a clothing item made of wool should not be
ironed”.

Draf
t

IV. POLICY ENFORCEMENT METHODOLOGY

In this section, is presented step by step the development of
the proposed approach and the final model that provides the
framework for the policy application.

A. Modeling devices and policies

During the first step of the methodology ontologies have
been used to model the devices, the items and the policies for
the two scenarios. For the first scenario, three ontologies have
been created: the WashingMachine ontology, the Clothing
ontology and the WashingPolicy ontology. The first ontology
models the washing machine device, the second the clothing
items and the third the policies which are expressed as rules in
the ontology.

Respectively, three ontologies have been used for the
second scenario: the Iron ontology, the IroningPolicy ontology
and the Clothing ontology from the previous scenario.

B. Ontology alignment

To achieve homogeneity and interoperability between the
three different ontologies of each scenario we applied ontology
alignment among pairs of ontologies for each scenario
separately. An alignment is a set of correspondences between
entities (e.g. classes, properties, individuals) occurring in the
ontologies. All the alignments are exported as ontologies and
are used for ontology merging in the next step.

C. Ontology merging

During this step we use the results of the previous steps in
order to create the final model. This model consists of the
merged ontologies from steps A and B. In this way common
knowledge is being shared between the different ontologies.

D. Final model querying

The final step of the methodology concerns the application
of the model. In order to extract information from the final
model and to test the function of the policies defined, a number
of queries are being applied to the model. It is worth noting that
the queries are applied directly to the device ontologies, which
can respond stating whether they support a service or not. Note
that during the construction of the ontologies in the first step,
no value has been assigned to a service provided by a device.
This is exactly the information the devices infer from their
connection with the policy ontologies during the alignment
process of the second step.

V. POLICY APPLICATION FRAMEWORK

In this section, we describe the application of the steps
presented in the previous section in the two scenarios we
presented in section III, using a number of specific tools for
each step. The aim is to demonstrate that the proposed
framework can be realized within the context of ubiquitous
computing applications. For our purposed, we model
ubiquitous computing applications composed of resources,
each of which comes with its own local ontology; we have
coined the metaphor of “activity spheres” to model such self-
contained applications [11]. The global state of an activity

sphere is encoded in the Sphere Ontology, which results from
the alignment of all the ontologies that represent the sphere’s
resources, agents, policies, etc. Thus, instead of using a policy
manager to apply the washing and ironing policies, we encode
them as ontologies, which can be accessed by the Activity
Sphere Manager.

For the construction of the ontologies, the tool Protégé [12]
has been used. In Fig. 1 is depicted the Clothing ontology
which is common for both scenarios.

Figure 1. The Clothing ontology

Policies have been expressed as SWRL [13] rules in the
policy ontology for both scenarios. In Fig. 2 we can see the
second washing policy of the first scenario, provided as
example in section III.

Figure 2. Policy expressed in SWRL language

For the alignment process the Alignment API [14] has been
used. The API offers a number of predefined algorithms to
provide the alignment between two ontologies. In the current
implementation the StringDistAlignment algorithm has been
used to compute the substring distance on the entity names.
Moreover a threshold (0.9) has been used in selecting more
accurate correspondences. In Fig. 3 we can see an example of
alignment output in RDF [15]:

Figure 3. Sample of RDF code

Draf
t

The above code indicates that the data property color in the
Clothing ontology is equivalent with the data property color in
the WashingPolicy ontology. In this case OWL [16] ontologies
were merged, so the output format was changed into a set of
OWL axioms. The API provides the notion of visitors of the
alignment cells which are used to render the alignments. In the
present implementation the OWLAxiomsRendererVisitor has
been used, which generates an ontology, merging both aligned
ontologies and comprising OWL axioms for expressing the
subsumption and equivalence relations. In Fig. 4 appears the
above code (Fig. 3) as an OWL axiom:

Figure 4. Example of OWL axiom

The next step was to export all the set of axioms as OWL
ontologies so that they could be merged with the ontologies
created for modeling the scenarios of the previous section. This
can be achieved through an option in the Protégé. Thus the
result is three new ontologies for each scenario which were
merged with the scenarios ontologies.

In order to merge the ontologies Jena [17] has been used.
Jena provides a programming environment and a query engine
for RDF and OWL ontologies. It also provides inference
support so as to extract additional information from these
models. For this purpose Jena offers a variety of reasoners
which can be plugged to the model. In our case we used the
Pellet reasoner [18] because it offers support for SWRL rules,
which as previously mentioned were used to describe the
policies for each activity in the two scenarios. Fig. 5 shows the
basic classes of the merged model and the equivalences
between them.

Figure 5. Basic classes of the final model

Jena provides the ability to apply queries in SPARQL [19].
Below we show an example query. In order to apply the query,
four instances in the Clothing ontology of the first scenario
were created: a white shirt and a colored one, a shirt made of
wool and a shirt made of cotton. Also in the WashingMachine
ontology a washing machine instance was created to represent
the device. In this query, shown in Fig. 6, the washing machine

is asked if it supports the mixed color washing (whites and
colored items) or clothing items of different texture together
and which is the policy controlling these functions. It is
expected that the washing machine will not support the
washing for the above clothing items with these characteristics
and due to the policies pre-defined.

Figure 6. SPARQL query

In Fig. 7 is depicted the result of the query. As it was
expected the washing machine doesn’t support the washing of a
white and a color clothing item put together and also the
washing of items of different fabric at the same time. In the
first column appears the washing machine, the second provides
the answer (represented as Boolean) and in the third column the
policy that controls the function. As expected the answer is
negative. Otherwise, if the clothing items had other
characteristics (e.g. all the same color) the answer would be
positive and the washing machine would support the washing
service.

Figure 7. Result of the SPARQL query

The activity sphere composed by the Washing Machine and
the Clothing items is managed by a dedicated Sphere Manager.
An Ontology Manager is responsible for creating the Sphere
Ontology by merging the ontologies and the various policies
using Jena. The Sphere Manager, in order to realize specific
tasks related to washing clothes, sends queries to the Ontology
Manager. In turn, the Ontology Manager applies the queries to
the Sphere Ontology and provides the results to the Sphere
Manager. In our approach, the results of these queries already
integrate the related policies, thus a separate policy enforcing
component is not necessary.

For the second scenario the exact same methodology can be
followed. So, at this point we are not going to repeat all the
steps but will present only the results of the query application
for the second model. As before, a dedicated Sphere Manager
is realized that manages the Ironing sphere and a dedicated

Draf
t

Ontology Manager manages the Ironing sphere ontology,
which integrates the ironing policy.

This time the Iron ontology is asked if supports the ironing
service for clothing item made of wool. The result is shown in
Fig. 8.

Figure 8. Result of the SPARQL query

VI. CONCLUSIONS

This paper proposed a framework for policy definition and
application in ubiquitous computing applications that are
composed from services offered by heterogeneous smart
resources. Policies are defined as rules that are applied on the
resource ontologies. This framework can be used for any type
of policy including security, privacy, interaction etc. The main
advantage is that no specific policy enforcement component is
required, because policy ontologies are merged with other
resource ontologies and they can be accessed by any ontology
manager. The proposed framework has been applied in the
context of the ATRACO project [20] and currently is limited to
the types of applications that were developed in the project. We
are now working on creating a generic schema for any type of
policy created by the users.

ACKNOWLEDGMENT

The research leading to the above results has been partially
conducted within project ATRACO and was partially funded
from the European Community 7

th
 Framework Programme

(FP7/2007-2013) under grant agreement No. 216837.

REFERENCES

[1] J. Ahola, “Ambient Intelligence,” ERCIM News, (47), October 2001.

[2] T. Heinroth, A. Kameas, G. Pruvost, L. Seremeti, Y. Bellik and W.
Minker, “Human-Computer Interaction in Next Generation Ambient
Intelligent Environments”. Intelligent Decision Technologies, special
issue on Knowledge-based environments and services in HCI, 5(1),
2011, IOS Press, to appear.

[3] M. J. Covingtony, P. Fogla, Z. Zhan, “A Context-Aware Security
Architecture for Emerging Applications,” Procceding of the Annual
Computer Security Applications Conference, December 2002.

[4] A. Uszok et al., “KAoS policy and domain services: Toward a
description-logic approach to policy representation, deconfliction, and
enforcement,” Proceedings of the fourth IEEE International Workshop
on Policies for Distributed Systems and Networks, 2003.

[5] L. Kagal, T. Finin, an A. Joshi, “A Policy Language for A Pervasive
Computing Environment,” Proceedings of the fourth IEEE International
Workshop on Policies for Distributed Systems and Networks, 2003.

[6] A. Patwardhan, V. Korolev, L. Kagal, and A. Joshi, “Enforcing policies
in Pervasive Environments,” Proceedings of the first Annual
International Conference on Mobile and Ubiquitous Systems:
Networking and Services, 2004.

[7] Z. Jiang, K. x.K. Lee, S. Kim, H. Bae, S. Kim, S. Kang, “Design of a
Security Management Middleware in Ubiquitous Computing
Environments,” Proceedings of the Sixth International Conference on
Parallel and Distributed Computing Applications and Technologies, pp.
306 – 308, 2005.

[8] J. Strassner, S. van der Meer, B. Jennings, M. P. De Leon, “An
Autonomic Architecture to Manage Ubiquitous Computing Networking
and Applications,” Proceedings of the first International Conference on
Ubiquitous and Future Networks, July 2009.

[9] J. Strassner, J. de Souza, D. Raymer, S. Samudrala, S. Davy, K. Barrett,
“The Design of a New Policy Model to Support Ontology-Driven
Reasoning for Autonomic Networking,” Journal of Network and
Systems Management, vol. 17, pp. 114-125, 2007.

[10] A. M. Almuhaideb, M. A. Alhabeeb, P. D. Le, B. Srinivasan, “Flexible
Authentication Techique for Ubiquitous Wireless Communication using
Passport and Visa Tokens,” Journal of Telecommunications, vol. 1, pp.
1-10, March 2010.

[11] L. Seremeti, C. Goumopoulos and A. Kameas, “Ontology-based
modeling of dynamic ubiquitous computing applications as evolving
activity spheres”. Pervasive and Mobile Computing, 5(5), 2009, Elsevier
Science, pp 574-591.

[12] H. Knublauch, M. Horridge, M. Musen, A. Rector, R. Stevens, N.
Drummond, P. Lord, N. F. Noy, J. Seidenberg, H. Wang, “The Protégé
OWL experience,” Workshop on OWL: Experiences and Directions. In
fourth International Semantic Web Conference, 2005. Available at:
http://protege.stanford.edu/

[13] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M.
Dean, “SWRL: A Semantic Web Rule Language combing OWL and
RuleML,” W3C Submission, May 2004. Available at:
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[14] Alignmet API. Available at: http://alignapi.gforge.inria.fr/

[15] Resource Description Framework. Available at:
http://www.w3.org/RDF/

[16] Ontology Web Language. Available at: http://www.w3.org/TR/owl-
features/

[17] Jena – A Semantic Web Framework for Java. Available at:
http://jena.sourceforge.net/

[18] Pellet: OWL Reasoner for Java. Available at:
http://clarkparsia.com/pellet/

[19] SPARQL Query Language in RDF. Available at:
http://www.w3.org/TR/rdf-sparql-query/

[20] ATRACO Project. Available at: http://www.uni-ulm.de/in/atraco

Draf
t

