
Chapter 20
An Ontology-Driven Approach and a Context
Management Framework for Ubiquitous
Computing Applications

Christos Goumopoulos and Achilles Kameas

20.1 Introduction

Pervasive or Ubiquitous computing is a new technological paradigm in which
every thing around us has built-in and interconnected computers (Weiser, 1991;
Disappearing Computer, 2007). Embedded in everyday objects these interconnected
devices (also called artifacts) open up an unlimited number of possibilities for many
new applications and services (Norman, 1999; Bergman, 2000). Applications result
from the dynamic and adaptive composition of such artifacts, triggered via explicit
user/application requests, application/task templates, or even more autonomic inter-
action schemes. Then, in this context, a “system” is defined to be the collective,
complex service that emerges as an aggregation of simpler services offered by
independent artifacts.

Ontologies can help address some key issues of Ubiquitous computing envi-
ronments such as knowledge representation, semantic interoperability and service
discovery. One important issue, for example, to be resolved in building a Ubiquitous
computing system, is the development of interfaces between heterogeneous and
incompatible components, objects or artifacts. This can be dealt with by develop-
ing an ontology of concepts so that different types of functionality and interactions
or artifact bindings can be described in a way that is natural and consistent across
different systems. If the services provided by artifacts are to be properly exploited,
then it must be ensured that they will be able to interpret the representations sent to
them and to generate the representations expected from them. Following a service-
oriented approach, applications state their requirements in terms of concepts that are
part of the application’s ontology rather than specific resource instances.

It is also important to capture complex interactions between many different
artifacts. Thus, apart from simple peer-to-peer interactions, appropriate descrip-
tions are needed to support more complex interaction structures; both synchronous

C. Goumopoulos (B)
Distributed Ambient Information Systems Group, Hellenic Open University & Computer
Technology Institute, Patras, Hellas, Greece
e-mail: goumop@cti.gr

463R. Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications,
DOI 10.1007/978-90-481-8847-5_20, C© Springer Science+Business Media B.V. 2010

Draf
t

464 C. Goumopoulos and A. Kameas

and asynchronous schemes are required to cater for the complexity of pervasive
computing applications. To achieve synergy, the system has to apply global decision
making procedures in order to cope with distributed resource management, service
composition and performance optimization. At the same time, each artifact employs
local decision making procedures in order to adjust its autonomous operation to
changes of context, to learn and to maintain its stable operation.

The goal of this chapter is to present an ontology-driven approach and a con-
text management framework for the composition of context-aware Ubiquitous
computing applications. The next section outlines how context is modeled and
used in various Ubiquitous computing systems emphasizing on ontology-oriented
approaches. Then we describe the ontology that was developed in order to con-
ceptually represent context-aware Ubiquitous computing systems. This ontology is
designed taking into account both the autonomous nature of components, objects
and artifacts and the necessity of their interoperability; so it is divided into two
layers, a private (application-specific) and a common (core) one. The core ontol-
ogy defines a meta-model of the Ubiquitous computing domain based on the
Bunge-Wand-Weber (BWW) ontology. Then we present a hierarchical approach
for engineering context-aware Ubiquitous computing systems including the con-
text management and decision-making processes as well as the analysis of the
mechanism that was developed based on that processes. Finally, we conclude by
evaluating our ontology-driven approach and presenting the lessons learned. A pro-
totype application is also outlined where an augmented plant is incorporated in a
Ubiquitous computing environment in order to collaborate with other augmented
objects, providing thus a communication channel between plants and people.

20.2 Ontology Based Modeling of Context Aware Ubiquitous
Computing Systems

According to (Dey, 2001) context is: “Any information that can be used to char-
acterize the situation of entities (i.e. whether a person, place or object) that are
considered relevant to the interaction between a user and an application, including
the user and the application themselves. Context is typically the location, identity
and state of people, groups and computation and physical objects.” In Ubiquitous
computing applications different kinds of context can be used like physical (e.g.
location and time), environmental (e.g. weather and light) and personal information
(e.g. mood and activity). Nevertheless, the term context mostly refers to information
relative to location, time, identity and spatial relationships.

A number of informal and formal context models have been proposed in var-
ious Ubiquitous computing systems; a survey of context models is presented in
(Strang and Linnhoff-Popien, 2004). Among systems with informal context models,
the Context Toolkit (Dey et al., 2001) represents context in form of attribute-value
tuples. The Cooltown project (Kindberg et al., 2000) proposed a Web based model
of context in which each object has a corresponding Web description. Both ER
and UML models are used for the representation of formal context models by
(Henricksen et al., 2002).

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 465

As ontologies are a promising instrument to specify concepts and their inter-
relations, they can provide a uniform way for specifying the core concepts of a
context model, as well as an arbitrary amount of subconcepts and facts, altogether
enabling contextual knowledge sharing and reuse in a Ubiquitous computing system
(De Bruijn, 2003). Thus several research groups have presented ontology-based
models of context and used them in Ubiquitous computing applications. In the
following, we briefly describe the most representative ones.

In the GAIA framework (Ranganathan and Campbell, 2003), an infrastructure
is presented that supports the gathering of context information from different sen-
sors and the delivery of appropriate context information to Ubiquitous computing
applications. The project aim was to develop a flexible and expressive model for
context able to represent the wide variety of possible contexts and to support com-
plex reasoning on contexts. Context is represented with first-order predicates written
in DAML+OIL. This context model allows deriving new context descriptions from
other sensed context.

GLOSS (GLObal Smart Space) is a software infrastructure that enables the inter-
actions between people, artifacts, and places, while taking account of both context
and movement on a global scale (Dearle et al., 2003). By exploiting the features of
physical spaces, it uses people’s location and movement as a source of task-level
context and as a guide to provide appropriate information, or services. Therefore,
GLOSS facilitates the low-level interactions (such as tracking a user’s location) that
are driven by high-level contexts (such as a user’s task). This system accommodates
both service heterogeneity and evolution, using ontologies. The GLOSS ontologies
describe concepts, which provide the precise understanding of how services (phys-
ical and informational) are used and how users interleave various contexts at run
time.

CoBrA (Context Broker Architecture) is a pervasive context-aware comput-
ing infrastructure that enables Ubiquitous agents, services and devices, to behave
intelligently according to their situational contexts (Kagal et al., 2001). It is a broker-
centric agent architecture that provides knowledge sharing, context reasoning, and
privacy protection support for Ubiquitous context-aware systems, using a collection
of ontologies, called COBRA-ONT, for modeling the context in an intelligent meet-
ing room environment (Chen et al., 2003). These ontologies are expressed in the
Web Ontology Language (OWL), define typical concepts associated with places,
agents, and events and are mapped to the foundational ontologies that are relevant
to smart spaces.

Wang et al. created an upper ontology, the CONON (Wang et al., 2004) context
ontology, which captures general features of basic contextual entities, a collection
of domain specific ontologies and their features in each subdomain. The upper
ontology is a high-level ontology which defines basic concepts about the phys-
ical world such as “person”, “location”, “computing entity”, and “activity”. The
domain-specific ontologies, are a collection of low-level ontologies, which define
the details of general concepts and their properties in each sub-domain where they
apply to (like home domain, office domain). All these context ontologies help in
sharing a common understanding of the structure of contextual information coming
from users, devices, and services, so as to support semantic interoperability and

Draf
t

466 C. Goumopoulos and A. Kameas

reuse of domain knowledge. The CONON ontologies are serialized in OWL-DL
which has a semantic equivalence to the well researched description logic (DL).
Thus CONON supports two types of reasoning: reasoning to detect and correct
inconsistent context information and reasoning as a means to derive higher level
context information. The latter type of reasoning is based on properties like symme-
try and transitivity, as well as on user-defined rules. The CONON ontology is part
of the SOCAM (Service-Oriented Context-Aware Middleware) architecture, which
supports the building and rapid prototyping of context-aware services in pervasive
computing environments (Gu et al., 2004).

The Context Ontology Language (CoOL) (Strang et al., 2003) is based on
the Aspect-Scale-Context Information (ASC) model. Aspects represent classi-
fications (e.g. Temperature), while scales are individual dimensions of aspects
(e.g. Celsius). Context information is attached to a particular aspect and scale;
quality metadata (e.g. meanError) is associated with information via quality prop-
erties. This contextual knowledge is evaluated using ontology reasoners, like
F-Logic and OntoBroker. In addition to the determination of service interoper-
ability in terms of contextual compatibility and substitutability, this language is
used to support context-awareness in distributed service frameworks for various
applications.

The CADO (Context-aware Applications with Distributed Ontologies) frame-
work (De Paoli and Loregian, 2006) relies on distributed ontologies that are shared
and managed in a peer-to-peer fashion. It is composed of three layers and designed
to support mobility of workers in complex work settings. The three layers ensure
semantic interoperability via the process of ontology merging, while context and
application interoperability are ensured using Context and Interaction Managers
respectively.

The CoCA (Collaborative Context-Aware) system is a collaborative, domain
independent, context-aware middleware platform, which can be used for context-
aware application development in Ubiquitous computing (Ejigu et al., 2007).
This architecture for context-aware services focuses on context-based reason-
ing in Ubiquitous computing environments, using semantic-based collaborative
approaches. The model uses an ontology for modeling and management of con-
text semantics and a relational database schema for modeling and management of
context data. These two elements are linked through the semantic relations built in
the ontology.

The GAS Ontology (Christopoulou and Kameas, 2005) is based on a different
approach for modeling Ubiquitous computing applications that are composed of
artifacts. It adopts GAS, the Gadgetware Architectural Style (Kameas et al., 2003)
according to which artifacts are called eGadgets, their services are called Plugs and
the combination of two services is called a Synapse. GAS Ontology aims to con-
ceptualize GAS by describing the semantics of these basic terms and by defining
the relations among them. Thus the GAS Ontology provides a shared means for the
communication and collaboration among artifacts, even though they may be pro-
duced by different manufacturers. This approach serves as the basis of our work
that is presented later in this chapter.

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 467

Although each research group follows a different approach for using ontolo-
gies in modeling and managing context in Ubiquitous computing applications, it
has been acknowledged by the majority of researchers (Dey, 2001; Henricksen
et al., 2002; Ranganathan and Campbell, 2003; Christopoulou and Kameas, 2005)
that it is a necessity to decouple the process of context acquisition and interpreta-
tion from its actual use. This can be achieved by introducing a consistent, reliable
and efficient context framework which can facilitate the development of context-
aware applications. In this respect, we propose an approach for a context-aware
Ubiquitous computing system that eases the composition of such context-aware
Ubiquitous computing applications and separates this process from the process of
context acquisition.

The use of ontologies to model context-aware systems facilitates knowledge
sharing across different systems and context reasoning based on semantic Web tech-
nologies. An important distinction between the approaches presented above and the
one we adopted to develop the GAS ontology is that the former are based on under-
standing of ontology as a specification of some conceptualization (Guizzardi et al.,
2002), whereas we approach ontology in philosophical terms, e.g. as in (Milton and
Kazmierczak, 2004); this led to the development of an abstract meta-model for the
Ubiquitous computing environment.

20.3 An Ontology-Driven Meta-Model for Ubiquitous
Computing Systems

20.3.1 Underlying Concepts

From the system engineering perspective, conceptual modeling is at the core of
systems analysis and design. Our approach for developing a conceptual model
that represents the structural, relational and behavioral elements of the targeted
Ubiquitous computing systems is based on the so-called Bunge-Wand-Weber
(BWW) ontology. Ontology in this context represents a well-established theoretical
domain within philosophy dealing with the models of reality. Wand and Weber have
taken and extended an ontology presented by Mario Bunge (Bunge, 1977, 1979)
and developed a formal foundation for modeling information systems (Wand and
Weber, 1990). BWW Ontology has been widely applied in the information systems
research field in contexts such as comparison of information systems analysis and
design grammars, ontological evaluation of modeling grammars, information sys-
tems interoperability and for requirements engineering for commercial-off-the-shelf
software and alignment in enterprise systems implementations (Rosemann et al.,
2004).

Although the BWW ontology constructs have been originally defined using a
rigorous set-theoretic language in many subsequent works the researchers attempted
to simplify and clarify the explanation of the constructs by defining those using plain
English (Weber, 1997). Following is the description of selected core ontological
constructs of the BWW ontology:

Draf
t

468 C. Goumopoulos and A. Kameas

• Thing: A thing is the basic construct in the BWW ontological model. The world is
made of things that have properties. Two or more things (composite or primitive)
can be associated into a composite thing.

• Property: We know about things in the world via their properties. A property
is modeled via a function that maps the thing into some value. Properties are
classified in a number of categories: hereditary, emergent, intrinsic, binding/non-
binding and mutual.

• Mutual Property: A property that is meaningful only in the context of two or
more things.

• State: The vector of values for all property functions of a thing is the state of the
thing.

• Conceivable State: The set of all states that the thing may ever assume.
• Stable state: A stable state is a state in which a thing, subsystem, or system

will remain unless forced to change by virtue of the action of a thing in the
environment (an external event).

• Transformation of a Thing: A mapping from a domain comprising states to a
co-domain comprising states.

• System: A set of things will be called a system, if, for any bi-partitioning of the
set, interactions exist among things in any two subsets.

• System Composition: The things in the system are its composition.
• System Environment: Things that are not in the system, but which interact with

things in the system are called the environment of the system.
• System structure: The set of couplings that exist among things within the system,

and among things in the environment of the system and things in the system.
• Subsystem: A system whose composition and structure are subsets of the

composition and structure of another system.

For developing a conceptual model for the Ubiquitous computing application
domain, instead of using the entire BWW ontology, a more focused ontology is
derived, by taking into consideration the requirements of the target application
domain. Therefore, an appropriate subset of concepts is selected by applying elimi-
nation and specialization processes. In a similar perspective (Rosemann and Green,
2000), argue that taking into account the objectives of the modeling tasks in a
specific problem domain as well as the type of users to be involved can assist in
developing new ontologically based specific modeling grammars. In the next sec-
tion we extend the concept of Thing to the concept of Entity and the concept of
Composite Thing to the concept of Ambient Ecology. New concepts are introduced
like the Plug and Synapse in order to provide detailed representation of the interac-
tion among entities. The main advantage of this process is that the focused ontology
is based on a well-established ontology with theoretical foundations. In addition,
in order to communicate clearly and relatively easily the concepts of the derived
conceptual model, we developed a description of the ontological constructs using
a meta-model. Through this meta-model, the understanding of the ontological con-
structs and how they relate to each other can be explained clearly. We have used the
UML meta-language for that purpose.

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 469

20.3.2 Focused Ontology

Our model defines the logical elements necessary to support a variety of applica-
tions in Ubiquitous computing environments. Its basic definitions are given below.
A graphical representation of the concepts and the relations between them is given
as a UML class diagram in Fig. 20.1.

eEntity: An eEntity is the programmatic bearer of an entity (i.e. a person, place,
object, biological being or a composition of them). An eEntity constitutes the basic
component of an Ambient Ecology. “e” stands here for extrovert. Extroversion is
a central dimension of human personality, but in our case the term is borrowed
to denote the acquired through technology competence of an entity to interact with
other entities in an augmented way for the purpose of supporting the users’ everyday
activities meaningfully. This interaction is mainly related with either the provision
or consumption of context and services between the participating entities. A coffee
maker, for instance, publishes its service to boil coffee, while context for a person
may denote her activity and location. An augmented interaction between the coffee
maker and the person is the activation of the coffee machine when the person awakes
in the morning. For this to happen we need probably a bed instrumented with pres-
sure sensors (an artifact) and a reasoning function for the persons’ awaking activity,
which may not be trivial to describe. An eEntity in general possesses properties
of three types: structural which belong to the entity itself; relational which relate
the entity to other entities; and behavioral which determine possible changes to the
values of structural and relational properties.

Artifacts: An artifact is a tangible object (biological elements like plants and ani-
mals are also possible) which bears digitally expressed properties; usually it is an
object or device augmented with sensors, actuators, processing, networking unit
etc. or a computational device that already has embedded some of the required

Fig. 20.1 A meta-model for the Ubiquitous computing Environment

Draf
t

470 C. Goumopoulos and A. Kameas

hardware components. Software applications running on computational devices
are also excessively considered to be artifacts. Examples of artifacts are furniture,
clothes, air conditioners, coffee makers, a software digital clock, a software music
player, a plant, etc.

Ambient Ecology: Two or more eEntities can be combined in an eEntity syn-
thesis. Such syntheses are the programmatic bearers of Ambient Ecologies and can
be regarded as service compositions; their realization can be assisted by end-user
tools. Since the same eEntity may participate in many Ambient Ecologies the whole-
part relationship is not exclusive. In the UML class diagram (see Fig. 20.1) this is
implied by using the aggregation symbol (hollow diamond) instead of the com-
position symbol (filled diamond). Ambient Ecologies are synthesizable, because
an Ambient Ecology is itself regarded as an eEntity and can participate in another
Ambient Ecology.

Properties: eEntities have properties, which collectively represent their physical
characteristics, capabilities and services. A property is modeled as a function that
either evaluates an entity’s state variable into a single value or triggers a reaction,
typically involving an actuator. Some properties (i.e. physical characteristics, unique
identifier) are entity-specific, while others (i.e. services) may be not. For example,
attributes like color/shape/weight represent properties that all physical objects pos-
sess. The service light may be offered by different objects. A property of an entity
composition is called an emergent property. All of the entity’s properties are encap-
sulated in a property schema which can be send on request to other entities, or tools
(e.g. during an entity discovery).

Functional Schemas: An entity is modeled in terms of a functional schema: F =
{f1, f2, . . . , fn}, where each function fi gives the value of an observed property i in
time t. Functions in a functional schema can be as simple or complex is required
to define the property. They may range from single sensor readings to rule-based
formulas involving multiple properties, to first-order logic so that we can quantify
over sets of artifacts and their properties.

State: The values for all property functions of an entity at a given time represent
the state of the entity. For an entity E, the set P(E) = {(p1, p2 . . . pn) |pi = fi(t) }
represents the state space of the entity. Each member of the state vector represents
a state variable. The concept of state is useful for reasoning about how things may
change. Restrictions on the value domain of a state variable are then possible.

Services: Services are resources capable of performing tasks that form a coher-
ent functionality from the point of view of provider entities and requester entities.
Services are self-contained, can be discovered and are accessible through synapses.
Any functionality expressed by a service descriptor (a signature and accessor inter-
face that describes what the service offers, requires and how it can be accessed) is
available within the service itself and is manifested by plugs.

Transformation: A transformation is a transition from one state to another. A
transformation happens either as a result of an internal event (i.e. a change in
the state of a sensor) or after a change in the entitys’ functional context (as it is
propagated through the synapses of the entity).

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 471

Plugs: Plugs represent the interface of an entity. An interface consists of a set of
operations that an entity needs to access in its surrounding environment and a set of
operations that the surrounding environment can access on the given entity. Thus,
plugs are characterized by their direction and data type. Plugs may be output (O) in
case they manifest their corresponding property (e.g. as a provided service), input
(I) in case they associate their property with data from other artifacts (e.g. as ser-
vice consumers), or I/O when both happens. Plugs also have a certain data type,
which can be either a semantically primitive one (e.g. integer, boolean, etc.), or a
semantically rich one (e.g. image, sound etc.). From the user’s perspective, plugs
make visible the entities’ properties, capabilities and services to people and to other
entities.

Synapses: Synapses are associations between two compatible plugs. In prac-
tice, synapses relate the functional schemas of two different entities. Whenever
the value of a property of a source entity changes, the new value is propagated
to the target entity, through the synapse. The initial change of value caused by
a state transition of the source entity causes finally a state transition to the tar-
get entity. In that way, synapses are a realization of the functional context of the
entity.

20.3.3 Core vs. Application Ontology

The ontology that supports the development of Ubiquitous computing applications
is divided in two basic layers: the Core and the Application layer. The discussed
approach is in line with the design criteria proposed in (Gruber, 1993) for efficient
development of ontologies:

– Maximum monotonic extensibility: new general or specialized terms can be
included in the ontology in such a way that it does not require the revision of
existing definitions.

– Clarity: terms which are not similar (common-sense terms vs. specialized domain
ontologies) are placed in different taxonomies.

Core ontology – represents core knowledge of the Ubiquitous computing envi-
ronment. This layer is designed to ensure syntactic and structural interoperability
between various artifacts. Since the core ontology describes the language that arti-
facts use to communicate and collaborate it must be the same for all artifacts. A key
issue is that the core ontology cannot be changed and contains only the necessary
information in order to be small. In that way even artifacts with limited memory
capacity can store and have access to the basic definitions. A graphical representa-
tion of the core ontology is given in Fig. 20.1. The basic classes of the core ontology
have been discussed in the previous section.

Application ontology – represents knowledge about the application environ-
ments such as specific type of users and artifacts and acquired knowledge through

Draf
t

472 C. Goumopoulos and A. Kameas

synapses. This layer is designed to ensure semantic interoperability. The knowledge
represented by application ontology is described as instances of the classes defined
in the core ontology. In that sense the application ontology is not a stand-alone
ontology as it does not contain the definition of its concepts and their relations.
The application ontology represents the description of each artifact that is related
with an application containing information about physical properties, plugs and the
services that are provided through these plugs. For example, the application ontol-
ogy of the eLamp artifact contains knowledge about the physical characteristics of
eLamp, such as luminosity, the description of a plug with an identifier “OnOff”
based on the definition provided by core ontology as well as the declaration that
this plug is associated with the service “light”. As services are the primary con-
stituents of Ubiquitous computing systems the application ontology must contain
specific service descriptions in order to support the service discovery and invoca-
tion mechanism. The application ontology describes also the synapses, the plugs
of the artifact that participate in synapses, and the information about the capabili-
ties/services of other artifacts that has been acquired via the synapses. Contrary to
core ontology, the size of which must be small, the size of the application ontology
can be as large as required, bounded only by the artifacts’ memory capacity. In addi-
tion, the application ontology is dynamic and can change over time without causing
problems to artifact collaboration. The dynamic nature of the application ontology
results from the knowledge that can be acquired through the various synapses that
may be established between artifacts.

20.4 Context Management Framework

20.4.1 Context Management Process

A Ubiquitous computing application typically consists of an infrastructure used to
capture context and a set of rules governing how the application should respond
to changes in this context. In order to isolate the user from the process of context
acquisition and management and on the other hand provide her with a Ubiquitous
computing system that enables the composition of context-aware applications we
propose that the system is organized in a hierarchy of levels.

The design approach for composing context-aware Ubiquitous computing appli-
cations needs to be backed by an engineering methodology that defines the correct
formulation of the context and behavior. The proposed context management pro-
cess is depicted in Fig. 20.2. The motivation for this process emerged from the fact
that artifacts in Ubiquitous computing environment may be in different “states” that
change according to the artifacts’ use by users and their reaction is based both on
users’ desires and these states.

The first step in this context management process is the acquisition of the low
level context, which is the raw data given by the sensors (Lexical Level). A set of
sensors are attached to an artifact so that to measure various artifact parameters, e.g.
the position and the weight of an object placed on an augmented table. As the output

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 473

Fig. 20.2 Context
management process

of different sensors that measure the same artifact parameter may differ, e.g. sensors
may use different metric system, it is necessary to interpret the sensors’ output to
higher level context information (Syntactical/Representation Level). Aggregation
of context is also possible meaning that semantically richer information may be
derived based on the fusion of several measurements that come from different homo-
geneous or heterogeneous sensors. For example, in order to determine if an object
is placed on a table requires monitoring the output of table’s position and weight
sensors.

Having acquired the necessary context we are in a position to assess an arti-
fact state (Reasoning Level) and decide appropriate response activation (Planning
Level). Adopting the definition from Artificial Intelligence, a state is a logical propo-
sition defined over a set of context measurements (Russell and Norvig, 2003). This
state assessment is based on a set of rules defined by the artifact developer. The
reaction may be as simple as turn on an mp3 player or send an SMS to the user, or it
may be a complex one such as the request of a specific service, e.g. a light service.
Such a decision may be based on local context or may require context from exter-
nal sources as well, e.g. environmental context, location, time, other artifacts. The
low (sensor) and high (fused) level data, their interpretation and the local and global
decision-making rules are encoded in the application ontology. The basic goal of
this ontology is to support a context management process that is based on a set of
rules which determine the way that a decision is taken and must be applied on exist-
ing knowledge represented by this ontology. The description of the different types
of these rules is given in the next section.

20.4.2 Rules

The application model specifies the behavior of an application and in our case this
behavior is represented by Event-Condition-Action (ECA) rules. The categories

Draf
t

474 C. Goumopoulos and A. Kameas

of rules that will support the decision-making process in the context management
framework are as follows.

20.4.2.1 Rules for Artifact State Assessment

The left part of these rules denotes the parameters that affect the state of an arti-
fact and the thresholds or the values for these specific parameters that lead to the
activation of the rule, while the right part of these rules denotes the artifact state
that is activated. These rules support the “translation” of low level context (values
of parameters measured by sensors) to state assessment; they may also incorporate
the translation from low level context to high level context (e.g. perform a set of
operations to values measured by sensors like estimate the average value).

20.4.2.2 Rules for the Local Decision-Making Process

These rules exploit exclusively knowledge from the artifact that uses them. Their
left part denotes the artifact states that must be detected and their possible activation
level and their right part denotes the artifact requests and needs. When an artifact
has a specific need we can consider that it needs a type of service offered by another
artifact. When a rule from this category is activated, the artifact has to search its
synapses in order to find a synapse which is associated to another artifact plug that
provides the requested service. If such a synapse is found then the artifact can select
it in order to satisfy its need. The situations, where more than one synapse is found
that may be used to satisfy the request or no synapses are found, are handled by
the local decision process using another kind of rules. The rules that define the final
reaction of an artifact can be defined by the user or can be based on specifically
user-defined policies. These rules support both the context delivery and the reaction
of an artifact based on the local decision from state assessments.

20.4.2.3 Rules for the Global Decision-Making Process

These rules are similar to the rules for the local decision-making. Their main dif-
ference is that the rules for the global decision-making process have to take into
account the states of other artifacts and their possible reactions so that to preserve a
global state defined by the user.

20.4.3 Implementation

The architecture of the system that implements the aforementioned context manage-
ment and reasoning process is shown in Fig. 20.3. The core modules of this system,
Ontology Manager, Rule Manager and Inference Engine, are part of the updated
version of the GAS-OS kernel (Drossos et al., 2007).

The Ontology Manager is the module responsible for the manipulation of knowl-
edge represented into the artifact ontology. Specifically, it can only query the artifact

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 475

Fig. 20.3 Systems’ architecture

common (core) ontology, since this ontology cannot be changed during the deploy-
ment of an application. On the other hand, it can both query and update the artifact
private (application) ontology. The basic functionality of the Ontology Manager is
to provide the other modules of the system with knowledge stored in the artifact
ontology by adding a level of abstraction between them and the ontology.

The Rule Manager manages the artifact rule base and is responsible for both
querying and updating this rule base. Note that the rules stored in an artifacts’ rule
base may only contain parameters, states and structural properties that are defined
into the artifacts’ private ontology. For the initialization of the context management
process, apart from the rules, a set of initial facts are necessary. The Rule Manager
is also responsible for the creation of a file containing the initial facts for an artifact.
For example an initial fact may define the existence of an artifact by denoting its
parameters, states and reactions that can participate in its rules and their initial val-
ues. In order to create such an initial fact, the Rule Manager uses knowledge stored
in the artifacts’ ontology. Subsequently, it queries the Ontology Manager for any
information that it needs, like the artifacts’ parameters, states and reactions.

The Inference Engine supports the decision-making process and is based on the
Jess rule engine (Java Expert System Shell) (Jess, 2007). In order to initialize its
process execution, the Inference Engine needs the artifact initial facts, which are
defined by the Rule Manager, and the rules stored in the rule base. Note that in the
current version of our system the rules in the rule base are stored in Jess format. The
Inference Engine is informed of all the changes of parameters values measured by
artifacts sensors. When it is informed of such a change, it runs all the rules of the
rule base. If a rule is activated, this module informs the artifacts operating system of
the activation of this rule and the knowledge that is inferred. The artifact’s state and
reaction is determined from this inferred knowledge.

The ontology describes the semantics of the basic terms of our model for
Ubiquitous computing applications and their interrelations. One of the ontology
goals is to describe the services that artifacts provide in order to support a service

Draf
t

476 C. Goumopoulos and A. Kameas

discovery mechanism. Thus the Ontology Manager provides methods that query
the ontology for the services that an artifact offers as well as for artifacts that pro-
vide specific services. GAS-OS gets from the Ontology Manager the necessary
service descriptions stored in the artifact local ontology, in order to implement a
service discovery mechanism. Finally the Ontology Manager using this mechanism
and a service classification can identify artifacts that offer semantically similar ser-
vices and propose objects that can replace damaged ones. Therefore, it supports the
deployment of adaptive and fault-tolerant Ubiquitous computing applications.

20.4.4 Engineering Applications

To achieve the desired collective functionality a user has to form synapses by
associating compatible plugs, thus composing applications using eEntities as com-
ponents. The idea of building Ubiquitous computing applications out of components
is feasible only in the context of a supporting component framework that acts
as a middleware. The kernel of such a middleware is designed to support basic
functionality such as accepting and dispatching messages, managing local hard-
ware resources (sensors/actuators), the plug/synapse interoperability and a semantic
service discovery protocol.

In terms of the application developer, plugs can be considered as context-
providers that offer high-level abstractions for accessing context (e.g. location, state,
activity, etc.). For example, an eLamp may have a plug that outputs whether the
eLamp is switched on or switched off and an eRoom a plug informing if some-
one is in this room or not. In terms of the service infrastructure (middleware), they
comprise reusable building blocks for context rendering that can be used or ignored
depending on the application needs. Each context-provider component reads input
sensor data related to the specific application and can output either low level con-
text information such as location, time, light level, temperature, proximity, motion,
blood pressure or high-level context information such as activity, environment and
mood. An artifact has two different levels of context; the low level which contains
information acquired from its own sensors and the high level that is an interpre-
tation of its low level context information based on its own experience and use.
Additionally an artifact can get context information from the plugs of other arti-
facts; this context can be considered as information coming from a “third-person
experience”.

The application developers may establish synapses between plugs to denote both
their preferences and needs and to define the behavior of the Ubiquitous computing
application. From the service infrastructure perspective, the synapses determine the
context of operation for each artifact; thus each artifact’s functionality is adapted to
the Ubiquitous computing application’s structure.

By providing users with this conceptual model, we manage to decouple the low-
level context management from the application business logic, which is captured
as expressions in terms of high-level concepts that are matched with services avail-
able in the current application context. Instead of the classical approach of using
established interfaces for resource access, this approach decouples the high-level
concepts from the instances implemented by each context.

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 477

20.5 Prototype Application Example

20.5.1 Scenario

The example illustrated in this section deals with establishing communication
between plants and artifacts. The prototype is a Ubiquitous computing application
that is deployed in an indoor environment (e.g. home, office) and aims at facilitat-
ing the user in looking after her indoor plants. This ambient intelligence scenario
demonstrates the concept of “communicating plant” (Goumopoulos et al., 2004) in
the context of an every-day environment with several layers of decision-making.

The scenario is quite simple. A person has a plant in her office. However busy
she may be, she still loves to take care of the plant. Several everyday objects are
at her disposal for giving her an appropriate feedback (Lamp, MP3Player, Mobile
Phone). Our aim is to form such an application where the plant will be able to
provide the human with the appropriate feedback about its condition. The sequence
of the scenario’s interactions is shown in Fig. 20.4.

The core artifact is the ePlant, which is constructed by adding sensors to the soil
or the leaves of a plant. The ePlant “decides” whether it needs water or not by using
its sensor readings and the appropriate decision making mechanism incorporated
in it. The eCarpet is used to record whether the plant owner is inside her office or
has stepped outside. Similarly, a eMoodCube (a glass brick that the user can set in

ePlant

eMobilePhone

eLamp

eCarpet

eMoodCube

eMP3Player

Need
Water

User inside
Office?

User
available?

Yes

Yes

visual
notification

No

aural
notification

SM
S

no
tif

ic
at

io
n

Editor

Do nothing
No

Fig. 20.4 Smart plant
flowchart diagram

Draf
t

478 C. Goumopoulos and A. Kameas

one of six possible positions) is used to provide an indication whether the user is
available or not.

An augmented Lamp (eLamp) and an MP3Player (eMP3Player) are used to pro-
vide visual and aural notification respectively to the user. This notification is given
according to the status of the eMoodCube. If the eMoodCube is set to “Do not dis-
turb” status (which has been mapped by the plant owner to one of the six possible
positions), the user is not notified at all. Lastly, in the case the user is not in her office,
the application uses the eMobilePhone (an augmented Mobile Phone) to send her a
SMS and inform her about the watering needs of the plant.

20.5.2 Components

The artifacts that are necessary for the realization of the above scenario are described
as follows:

ePlant: The ePlant is capable of deciding whether it needs water or not, based
on its sensor readings. These sensors fall into two categories: Thermistors, that is
sensors that can perceive the temperature of the plants leaves and the environment
and Soil Moisture Probes, which are able to measure the moisture level of the soil.
Decision making rules, specific to the plant species, which combine the information
given from the sensors above in order to provide a concrete decision on the current
plant’s state, are added in the ePlant local ontology.

eMobilePhone: The eMobilePhone is a personal java enabled mobile phone,
used for sending SMS to other mobile phones. When it receives a request to
notify the user via an SMS, it will send the SMS to the corresponding telephone
number.

eLamp: The eLamp is an augmented floor lamp used for visual notifications. The
lamp switch is controlled by a micro-controller, which adjusts the state of the eLamp
accordingly.

eCarpet: The eCarpet is an augmented carpet with pressure sensors attached,
used for sensing the occupancy of the office (i.e. if the user is in the office). Based
on the sequence that the pressure sensors are pressed, the eCarpet is capable of
deducing if someone is entering or leaving a room, thus if the user is present
or not.

eMoodCube: The eMoodCube is a glass brick containing a set of colored light
bulbs with tilt switches attached. Each of the six different positions can be used for
defining the current status or mood of the user.

eMP3Player: The eMP3Player is used to play audio files.

20.5.3 Implementation

A high-level view of the plugs and synapses that are necessary for the implementa-
tion of the Smart Plant application is given in Fig. 20.5.

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 479

Fig. 20.5 Plugs and synapses for the implementation of the smart plant application

We note that for the ePlant, eCarpet and eMoodCube, the evaluation of the state,
service or capability is based on a local decision making scheme, because the assess-
ment logic depends only on knowledge that is managed by the specific component
through its attached sensor network and rule-base. On the other hand, the service
provided by the eMobilePhone, eLamp and eMP3Player depends on a global deci-
sion making scheme, because the rules that govern the decision to offer a service
have to take into account the state and capability information of several eEntities.
For example, to decide whether to make the eLamp blink (as a visual notification
service to the user), we have to take into account the state of the ePlant, provided
by the NeedWater plug, the capability of the eCarpet to sense the presence of the
user in the office, provided by the OfficeOccupied plug, and the capability of the
eMoodCube to map the mood of the user, through the Mood plug. Thus, to turn on
or off the eLamp we have to define a rule that takes into account all the above plugs.

The following table summarizes the properties, plugs and operation rules (func-
tional schemas) of each eEntity participating in the Smart Plant application. This
knowledge is part of the application ontology defined for the application. We have
omitted information, such as physical properties, or other plugs, which may reflect
services that are not required by the specific application (Table 20.1).

By specifying the rule structure and semantics in an ontology that defines various
parameter and state types, as well as the arguments that the rules are based upon,

Draf
t

480 C. Goumopoulos and A. Kameas
Ta

bl
e

20
.1

Sm
ar

tp
la

nt
ap

pl
ic

at
io

n
on

to
lo

gy
co

nfi
gu

ra
tio

n
(p

ar
to

f)

eE
nt

ity
Pr

op
er

tie
s

Pl
ug

s
Fu

nc
tio

na
ls

ch
em

as

eP
la

nt
D

et
er

m
in

in
g

th
e

st
at

e
of

th
e

pl
an

t,
w

he
th

er
th

e
pl

an
tn

ee
ds

ir
ri

ga
tio

n
or

no
t.

N
ee

dW
at

er
:

{O
U

T
|B

oo
le

an
}

P
l
a
n
t
T
e
m
p
←

r
e
a
d
(
T
h
e
r
m
i
s
t
o
r
s
)

S
o
i
l
H
u
m
i
d
i
t
y
←

r
e
a
d
(
M
o
i
s
t
u
r
e
P
r
o
b
e
)

A
m
b
i
e
n
t
T
e
m
p
←

r
e
a
d
(
T
h
e
r
m
i
s
t
o
r
s
)

I
F
P
l
a
n
t
T
e
m
p
-
A
m
b
i
e
n
t
T
e
m
p
>

e
P
l
a
n
t
.
T
e
m
p
T
h
r
e
s
h
o
l
d
O
R
S
o
i
l
H
u
m
i
d
i
t
y
<

e
P
l
a
n
t
.
H
u
m
i
d
i
t
y
T
h
r
e
s
h
o
l
d

T
H
E
N
N
e
e
d
W
a
t
e
r
←

T
R
U
E

E
L
S
E
N
e
e
d
W
a
t
e
r
←

F
A
L
S
E

eC
ar

pe
t

T
he

ca
rp

et
is

pl
ac

ed
at

th
e

en
tr

an
ce

of
th

e
of

fic
e.

A
s

th
e

us
er

en
te

rs
or

le
av

es
he

/s
he

is
fo

rc
ed

to
st

ep
ov

er
th

e
ca

rp
et

.T
he

eC
ar

pe
tm

on
ito

rs
th

e
di

re
ct

io
n

of
th

is
m

ov
em

en
ta

nd
up

da
te

s
its

pl
ug

ac
co

rd
in

gl
y.

O
ffi

ce
O

cc
up

ie
d:

{O
U

T
|B

oo
le

an
}

S
e
n
s
o
r
A
r
r
a
y
←

r
e
a
d
(
S
e
n
s
o
r
N
e
t
w
o
r
k
)

O
f
f
i
c
e
O
c
c
u
p
i
e
d
←

F
i
n
d
M
o
v
e
m
e
n
t
D
i
r
e
c
t
i
o
n
(
S
e
n
s
o
r
A
r
r
a
y
)

eM
oo

dC
ub

e
A

s
th

e
m

oo
dC

ub
e

is
tu

rn
ed

it
ch

an
ge

s
its

co
lo

r
an

d
re

pr
es

en
ts

us
er

’s
m

oo
d.

Po
ss

ib
le

se
le

ct
io

ns
ar

e:
•D

O
_N

O
T

_D
IS

T
U

R
B

,
•N

O
T

IF
Y

_V
IS

U
A

L
,

•N
O

T
IF

Y
_A

C
O

U
ST

IC

M
oo

d:
{O

U
T
|En

um
er

at
io

n}
P
o
s
i
t
i
o
n
←

r
e
a
d
(
S
e
n
s
o
r
s
)

M
o
o
d
←

M
a
p
P
o
s
i
t
i
o
n
t
o
M
o
o
d
(
P
o
s
i
t
i
o
n
)

eM
ob

ile
Ph

on
e

Se
nd

SM
S

Se
rv

ic
e

(S
1)

SM
S:

{I
N
|B

oo
le

an
}

I
F
e
P
l
a
n
t
.
N
e
e
d
W
a
t
e
r
A
N
D
N
O
T

e
C
a
r
p
e
t
.
O
f
f
i
c
e
O
c
c
u
p
i
e
d

T
H
E
N
S
1
(
)

eL
am

p
L

ig
ht

se
rv

ic
e

(S
2)

O
nO

ff
:{

IN
|En

um
er

at
io

n}
I
F
e
P
l
a
n
t
.
N
e
e
d
W
a
t
e
r
A
N
D

e
C
a
r
p
e
t
.
O
f
f
i
c
e
O
c
c
u
p
i
e
d
A
N
D
e
M
o
o
d
C
u
b
e
.
M
o
o
d
=

N
O
T
I
F
Y
_
V
I
S
U
A
L

T
H
E
N
S
2
(
B
L
I
N
K
)

eM
P3

Pl
ay

er
Pl

ay
in

g
m

es
sa

ge
se

rv
ic

e
(S

3)
Pl

ay
:{

IN
|B

oo
le

an
}

I
F
e
P
l
a
n
t
.
N
e
e
d
W
a
t
e
r
A
N
D

e
C
a
r
p
e
t
.
O
f
f
i
c
e
O
c
c
u
p
i
e
d
A
N
D
e
M
o
o
d
C
u
b
e
.
M
o
o
d
=

N
O
T
I
F
Y
_
A
C
O
U
S
T
I
C

T
H
E
N
S
3
(
A
u
s
e
r
-
d
e
f
i
n
e
d
a
u
d
i
o
m
e
s
s
a
g
e
)

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 481

we can use the ontology to verify the validity of the rules. This also facilitates the
inclusion of context parameters in rules, since we know the rule structure and the
value types of different arguments. Furthermore, the use of ontological descriptions
allows heterogeneous entities to interoperate and interact with one another in a way
dictated by the application domain under examination.

20.5.4 Semantic-Based Service Discovery

Service and resource discovery will play an integral role in the realization of
Ubiquitous computing systems. Since artifacts are resource limited, they must be
able to discover and use the services of neighboring devices. A service discovery
mechanism is needed so that if a synapse is broken, e.g. because of an artifact fail-
ure, another artifact that offers a semantically equivalent service could be found.
In the example application scenario discussed previously, suppose that the synapse
between ePlant and eLamp is broken because of eLamp failure. Then, a new artifact
having a property that provides the service “light” must be found. Therefore, for a
Ubiquitous computing environment the infrastructure must be enhanced to provide
a semantic-based service discovery, so that it is possible to discover all the relevant
services.

Since for the Ubiquitous computing applications a semantic service discovery
mechanism is useful and the replacement of artifacts depends on the services that
artifacts offer, a service classification is necessary. In order to define such a service
classification we first identified some services that various artifacts may offer; for
the application scenario discussed indicative services are presented in

Table 20.2. From these it is clear that the services offered by artifacts depend on
artifacts physical characteristics and/or capabilities and their attached sensors and
actuators.

Next we had to decide how we should classify the services. The classification
proposals that we elaborated are the following: by object category, by human senses
and based on the signals that artifacts sensors/actuators can perceive/transmit. We
decided to combine these proposals so that to describe a more complete classifi-
cation. So we initially defined the following elementary forms of signals that are
used: sonic, optic, thermal, electromagnetic, gravity and kinetic. These concepts are

Table 20.2 Services that may be offered by artifacts

Artifact Offered services

ePlant needs water yes/no, needs nutrients yes/no, species, other physical
characteristics.

eCarpet object on it yes/no, objects’ position, direction, pressure, weight, frequency
eMoodCube current position
eMobilePhone send sms, send email, make phone call, get calendar, get contacts
eLamp switch on/off, light, heat
eMP3Player sound, sound volume, kind of music, play/pause/stop, next/previous track

Draf
t

482 C. Goumopoulos and A. Kameas

divided into lower level services (subclasses); e.g. the sonic service may be music,
speech, environmental sound, and noise. Additionally services may have a set of
properties; e.g. sonic can have as properties the volume, the balance, the duration,
the tone, etc. Finally we enriched this classification by adding services relevant to
environmental information, like humidity and temperature.

We have defined a lightweight Resource Discovery Protocol for eEntities (eRDP)
where the term resource is used as a generalization of the term service. The pro-
tocol makes use of typed messages codified in XML. Each message contains a
header part that corresponds to common control information including local IP
address, message sequence number, message acknowledgement number, destina-
tion IP address(es) and message type identification. The prototype was written in
Java using J2ME CLDC platform. kXML is used for parsing XML messages.

One of the ontology goals is to describe the services that the artifacts provide
and assist the service discovery mechanism. In order to support this functionality,
the Ontology Manager provides methods that query the application ontology for
the services that a plug provides as well as for the plugs that provide a specific ser-
vice. Therefore, the Ontology Manager provides to the calling process the necessary
knowledge (which is retrieved from the artifact) that is relevant to the artifact ser-
vices, in order to support the service discovery mechanism. Similarly the Ontology
Manager can answer queries for plug compatibility and artifact replace-ability.

Let’s return to the scenario discussed above, where the synapse between ePlant
and eLamp is broken. We said that when this happens, the system will attempt to find
a new artifact having a plug that provides the service “light”. The system software
is responsible to initiate this process by sending a message for service discovery
to the other artifacts that participate in the same application or are present in the
surrounding environment. This type of message is predefined and contains the type
of the requested service and the service’s attributes. A description of the eLamp
service is shown in Fig. 20.6.

When the system software of an artifact receives a service discovery message,
it forwards the message to the Ontology Manager. Let’s assume that the artifact
eBunny is available and that this is the first artifact that gets the message for service
discovery. The eBunny Ontology Manager firstly queries the application ontology of
eBunny in order to find if this artifact has a plug that provides the service “light”. If

<res_spec>
<res name> eLamp </ res name>
<res classification> light </res classification >
<res id> eRDP:PLUG:CTI-RU3-eLamp-ONOFF_PLUG </res id >
<res location> 150.140.30.5 </res location>
<res data> <attrName=“power” type=”bool” value=”false”
<attrName=”luminocity” type=”integer”, value=”10”
</res data>
<res timestamp> 4758693030 </res timestamp>
<res expiry> Never </res expiry>
</res_spec>

Fig. 20.6 XML description of eLamp service

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 483

we assume that the eBunny has the plug “LampBlink” that provides the service light,
the Ontology Manager will send to the system software a message with the descrip-
tion of this service. If such a service is not provided by the eBunny, the Ontology
Manager queries the eBunny application ontology in order to find if another artifact,
with which the eBunny has previously collaborated, provides such a service. In case
of a positive answer it returns as a reply the description of this service. If the queried
artifact, in our example the eBunny, has no information about an artifact that pro-
vides the requested service, the control is sent back to system software, which is
responsible to send the query message for the service discovery to another artifact.

20.6 Conclusions

The ontology and the context management framework that we developed sufficiently
supports the composition of context-aware Ubiquitous computing applications from
everyday enhanced physical objects and it also address a number of key issues of
such applications like application model dynamic adaptability and semantic service
discovery. The context model that we selected for both these Ubiquitous computing
applications is the same ontology-driven model.

Future Ubiquitous computing environments will involve hundreds of interact-
ing and cooperating devices ranging from unsophisticated sensors to multi-form
actuators. Although the majority of these devices may have limited resources (com-
putation, memory, energy, etc) or may be only oriented to certain tasks, their
collective behavior that results from local interactions with their environment may
cause coherent functional global patterns to emerge. Hence, the combination and
cooperation of locally interacting artifacts with computing and effecting capabil-
ities may trigger the continuous formation of new artifact ecologies that provide
services not existing initially in the individuals and exhibit them in a consistent and
fault-tolerant way. As these societies are dynamically reconfigured aiming at the
accomplishment of new or previous related tasks, their formation heavily depends
not only on space and time but also on their context of previous local interactions,
previous configured teams, successfully achieved goals or possibly failures. This
means that in order to initially create, manage, communicate with, and reason about,
such kinds of emergent ecologies, we need somehow to model and embed to these
entities social memory, enhanced context memory, and shared experiences. One step
to this end is the design and implementation of evolving multidimensional ontolo-
gies that will include both nonfunctional descriptions, and rules and constraints of
application, as well as aspects of dynamic behavior and interactions.

References

Bergman, E. 2000. Information appliances and beyond. San Francisco, CA: Morgan Kaufmann
Publishers.

Bunge, M. 1977. Treatise on basic philosophy: Volume 3: Ontology I: The furniture of the world.
Dordrecht: Reidel.

Draf
t

484 C. Goumopoulos and A. Kameas

Bunge, M. 1979. Treatise on basic philosophy: Volume 3: Ontology II: A world of systems.
Dordrecht: Reidel.

Chen, H., T. Finin, and A. Joshi. 2003. An ontology for context aware pervasive computing
environments. Knowledge Engineering Review 18(3):197–207.

Christopoulou, E., and A. Kameas. 2005. GAS ontology: An ontology for collaboration among
ubiquitous computing devices. International Journal of Human-Computer Studies 62(5):664–
685.

De Bruijn, J. 2003. Using ontologies – enabling knowledge sharing and reuse on the semantic web.
Technical Report DERI-2003-10-29. Austria: Digital Enterprise Research Institute (DERI).

De Paoli, F., and M. Loregian. 2006. Context-aware applications with distributed ontologies. In
Proceedings of the CAISE∗06 Workshop on Ubiquitous Mobile Information and Collaboration
Systems (UMICS ′06), CEUR Workshop Proceedings 242, eds. M.C. Norrie, S. Dustdar, and
H. Gall, 869–883.

Dey, A.K. 2001. Understanding and using context, personal and ubiquitous computing. Special
Issue on Situated Interaction and Ubiquitous Computing 5(1):4–7.

Dey, A.K., D. Salber, and G.D. Abowd. 2001. A conceptual framework and a toolkit for support-
ing the rapid prototyping of context-aware applications. Human-Computer Interaction Journal
16(2–4):97–166.

Dearle, A., G.N.C. Kirby, R. Morrison, A. McCarthy, K. Mullen, Y. Yang, R.C.H. Connor,
P. Welen, and A. Wilson. 2003. Architectural support for global smart spaces. In Proceedings of
the 4th International Conference on Mobile Data Management (MDM’03), 153–164. London:
Springer.

Disappearing Computer Initiative. 2007. http://www.disappearing-computer.net/. Accessed on 2
Aug 2007.

Dobson, S., and P. Nixon. 2004. More principled design of pervasive computing systems. In
Proceedings of Engineering for Human-Computer Interaction and Design, 292–305. Berlin:
Springer.

Drossos, N., C. Goumopoulos, and A. Kameas. 2007. A conceptual model and the supporting mid-
dleware for composing ubiquitous computing applications. Journal of Ubiquitous Computing
and Intelligence American Scientific Publishers (ASP) 1(2):1–13.

Ejigu, D., M. Scuturici, and L. Brunie. 2007. CoCA: A collaborative context-aware service plat-
form for pervasive computing. In Proceedings of the International Conference on Information
Technology, IEEE computer society, 297–302.

Goumopoulos, C., E. Christopoulou, N. Drossos, and A. Kameas. 2004. The PLANTS system:
Enabling mixed societies of communicating plants and artefacts. In Proceedings of the 2nd
European symposium on Ambient intelligence (EUSAI 2004), eds. P. Markopoulos, B. Eggen,
E.H.L. Aarts, and J.L. Crowley, 184–195. London: Springer.

Gruber, R. 1993. A translation approach to portable ontology specification. Knowledge Acquisition
5(2):199–220.

Guizzardi, G., H. Herre, and G. Wagner. 2002. On the general ontological foundations of concep-
tual modeling. In Proceedings of the 21st International Conference on Conceptual Modeling,
eds. S. Spaccapietra, S.T. March, and Y. Kambayashi, 65–78. London: Springer.

Henricksen, K., J. Indulska, and A. Rakotonirainy. 2002. Modeling context information in per-
vasive computing systems. In Proceedings of the 1st International Conference on Pervasive
Computing (Pervasive 2002), eds. F. Mattern, and M. Naghshineh, 167–180. London: Springer.

Jess, 2007. Rule engine for the java platform. http://herzberg.ca.sandia.gov/jess/. Accessed on 2
Aug 2007.

Kameas, A., S. Bellis, I. Mavrommati, K. Delaney, M. Colley, and A. Pounds-Cornish.
2003. An architecture that treats everyday objects as communicating tangible components.
In Proceedings of the 1st IEEE International Conference on Pervasive Computing and
Communications (PerCom03), 115–122. IEEE CS Press.

Kagal, L., V. Korolev, H. Chen, A. Joshi, and T. Finin. 2001. Centaurus: A framework for intelli-
gent services in a mobile environment. In Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCSW’01), 195–201. IEEE Computer Society.

Draf
t

20 An Ontology-Driven Approach and a Context Management Framework 485

Kindberg, T., J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal, M. Frid,
V. Krishnan, H. Morris, J. Schettino, B. Serra, and M. Spasojevic. 2000. People, places, things:
Web presence for the real world. Technical Report HPL-2000-16, HP Labs.

Milton, S.K., and E. Kazmierczak. 2004. An ontology of data modelling languages: A study using
a common-sense realistic ontology. Journal of Database Management 15(2):19–38.

Norman, D. 1999. The invisible computer. Cambridge, MA: MIT Press.
Ranganathan, A., and R. Campbell. 2003. An infrastructure for context-awareness based on first

order logic. Personal and Ubiquitous Computing 7(6):353–364.
Rosemann M., and P. Green. 2000. Integrating multi-perspective views into ontological analysis. In

Proceedings of the 21st International Conference on Information Systems, 618–627. Brisbane:
Association for Information Systems.

Rosemann M., and P. Green, and M. Indulska. 2004. A reference methodology for conducting
ontological analyses. In Proceedings of Conceptual Modeling – ER 2004, 110–121. London:
Springer.

Russell, S., and P. Norvig. 2003. Artificial intelligence: A modern approach, 2nd edition. Upper
Saddle River, NJ: Prentice Hall.

Gu, T., X. H. Wang, H .K. Pung, and D.Q. Zhang. 2004. An ontology-based context model in intel-
ligent environments. In Proceedings of the Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS’04), 270–275. Society for Computer Simulation.

Strang, T., and L. Linnhoff-Popien. 2004. A context modelling survey. Proceedings of the
1st International Workshop on Advanced Context Modelling, Reasoning and Management.
http://www.itee.uq.edu.au/∼pace/cw2004/Paper15.pdf.

Strang, T., L. Linnhoff-Popien, and K. Frank. 2003. CoOL: A context ontology language to enable
contextual interoperability. In Proceedings of the 4th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS2003), 236–247. Springer.

Wand, Y., and R. Weber. 1990. An ontological model of an information system. IEEE Transactions
on Software Engineering 16(11):1282–1292.

Wang, X.H., D.Q. Zhang, T. Gu, and H.K. Pung. 2004. Ontology based context modeling and
reasoning using OWL. In Proceedings of the 2nd IEEE Annual Conference on Pervasive
Computing and Communications Workshops. 18. IEEE Computer Society.

Weber, R. 1997. Ontological foundations of information systems. Coopers & Lybrant Accounting
Research Methodology. Monograph No. 4.

Weiser, M. 1991. The computer for the 21st century. Scientific American 265(3):94–104.Draf
t

	20 An Ontology-Driven Approach and a Context Management Framework for Ubiquitous Computing Applications
	20.1 Introduction
	20.2 Ontology Based Modeling of Context Aware Ubiquitous Computing Systems
	20.3 An Ontology-Driven Meta-Model for Ubiquitous Computing Systems
	20.3.1 Underlying Concepts
	20.3.2 Focused Ontology
	20.3.3 Core vs. Application Ontology

	20.4 Context Management Framework
	20.4.1 Context Management Process
	20.4.2 Rules
	20.4.2.1 Rules for Artifact State Assessment
	20.4.2.2 Rules for the Local Decision-Making Process
	20.4.2.3 Rules for the Global Decision-Making Process

	20.4.3 Implementation
	20.4.4 Engineering Applications

	20.5 Prototype Application Example
	20.5.1 Scenario
	20.5.2 Components
	20.5.3 Implementation
	20.5.4 Semantic-Based Service Discovery

	20.6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

