2006 IEEE International Conference on
Systems, Man, and Cybernetics
October 8-11, 2006, Taipei, Taiwan

A Collaborating Team of Spiking Neural Network Based Robotic
Agents for Inaccessible Fluidic Environments

Hani Hagras, Senior Member, IEEE , Martin Colley, Anthony Pounds-Cornish, Gustavo De Souza,
Victor Callaghan, George Nikiforidis, Christos Argyropoulos, Achilles Kameas, Frank Murphy

Abstract— In this paper, we will introduce a novel system
where identical miniaturized robotic agents with limited
capabilities will collaborate to form a team that is capable of
localizing and repairing scale formations in tanks and pipes
within inaccessible fluidic environments. Each robotic agent is
an autonomous entity that is based on the biologically inspired
Spiking Neural Networks (SNNs) that communicate using pulses
or spikes. The weights of the SNN are evolved using adaptive
Genetic Algorithm (GA) that uses adaptive crossover and
mutation to converge relatively fast to solutions that allow the
robots to complete the desired tasks. The robotic agents
communicate using indirect communication to move towards the
site of scale formation and collaborate to repair damages.

I. INTRODUCTION

S cale formation is a major problem in tanks and pipes
within quiescent inaccessible fluidic environments [1].
The mineral components of scale deposits depend strongly on
the chemical composition of the water used but in most cases
it consists of calcium carbonate (CaCQO3) [1]. The formation of
this mineral is favored by the high content of natural water in
calcium salts and dissolved carbonate species and this
formation can be described as follows [1]:

Ca®*(aq) +HCO; (aq) »CaCOs(s) + H (1

The protons released from this reaction result in changes of
the physicochemical parameters of the aqueous phase in
contact with the steel walls of tanks or pipes and this promotes
corrosion. Hence, the scale formation process is coupled with
corrosion which will consequently cause severe damages [2].

Currently, the practice in industry is to add to the fluid
chemical compounds that will effectively inhibit scale
formation [2]. As a result of the fact that the action of the scale
formation inhibitors is not localized, larger quantities of
chemicals are needed and consequently the treatment cost
increases [2]. Moreover, since in most of the cases these
compounds are toxic, their disposal after use is also a problem

This work was funded by the European Union (EU) Future and Emerging
Technology programme under Grant IST-2001-38911 entitled
“Self-Organised Societies of Connectionist Intelligent Agents capable of
Learning”

H. Hagras, M. Colley, A. Pounds-Comish, G. De Souza, V. Callaghan are
with the Department of Computer Science, University of Essex, Wivenhoe
Park, Colchester, CO4 3SQ, UK (phone: +44 1206 873601; fax: +44 1206
872788; e-mail: hani@essex.ac.uk).

G. Nikiforidis, C. Argyropoulos are with the Department of Medical
Physics, School of Medicine, University of Patras, GR 26500, Rion, Greece
A. Kameas is with the Computer Technology Institute, Patras, Greece.

F. Murphy is with Tyndall National Institute, Cork, Ireland.

1-4244-0100-3/06/$20.00 ©2006 IEEE

[2]. In addition, as mentioned above, calcium carbonate is the
most common component of scale deposit and once its
quantity around the initial fault exceeds a critical threshold, an
avalanche effect takes place causing its formation to become
much quicker which will result in great difficulties in scale
removal that will call for the use of highly-toxic substances
[1], [2]. Therefore, early detection (before the avalanche takes
place) and remediation of scale formation is imperative.

In this paper, we will introduce a novel solution based on
using a team of miniaturised robotic agents for the localization
and repair of scale formation. In the proposed solution, the
robotic agents will be able to detect very early scale
formation. The agents will then cooperate to move towards the
fault and upon approaching the fault point they may infuse an
effective scale formation inhibitor which shall result in
stopping the scale development process right at the initial
stages. The obvious advantage of this approach is that the
scale inhabitation action shall be localized and hence more
efficient. This will result in the use of very low quantities of
the inhibitors which consequently provides a reduction in the
operational costs and minimization of the environmental
hazards.

Recently many miniaturized robots have been developed
for navigation within inaccessible fluidic environments in
industrial and medical applications [3], [4]. In our application,
the robots need to have full autonomy which requires each of
them to be capable of perceiving the environment,
communicating effectively with the other robotic members of
the team and being intelligent enough to make proper
decisions in such a way the overall mission is achieved.
However, these miniaturized robots will have limited
memory, computation and power and hence the intelligence
and communication modules used by these robots need to be
able to operate on these limited platforms.

Biological neurons communicate by sending pulses across
connections to other neurons [5]. The pulse is also known as a
“spike” to indicate its short and transient nature [5]. Such
neurons are called spiking neurons and their networks are
termed Spiking Neural Networks (SNNs). As biological
organisms have shown to be excellent control systems using
SNNs then SNNs have the potential to produce good control
systems for autonomous robots [6]. SNNs are deemed
computationally more powerful than conventional artificial
neural network formalisms on the basis of extensive
theoretical work by Maass [7]. “Computationally more

daisy
Rectangle

powerful” implies that SNNs need fewer nodes to solve the
same problem than conventional artificial neural networks [7].
In addition, SNNs provide a number of other desirable
features such as noise-robustness and simple real-world
interfaces [8]. The computational power of SNNs exist
because of the intrinsic time-dependent dynamics of spiking
neurons that allow the temporal patterns of sensory-motor
events to be captured and exploited more efficiently than the
other connectionist models (i.e. with fewer neurons and
simpler circuits) [5]. Moreover, SNNs can be mapped easily
to hardware because the spikes are essentially binary events
and the non linear dynamics and the coding of spiking circuits
can be provided by spiking times, rather than by non linear,
real valued activation functions [8]. In other words, a few
logic operations and instructions to move around single bits
over time would be sufficient to embed large circuits of
spiking neurons that display complex abilities and behaviors
into tiny and low power chips [6], [8]. Therefore such SNNs
are appropriate control mechanisms for our miniaturized
autonomous robots as they can give a very good response
dealing with noise using tiny chips that consume little power.

A disadvantage of SNNs is that due to the non-continuous
output function employed by such neuron models, standard
learning algorithms based on gradient descent methods do not
apply [9]. Attempts to modify back propagation and other
methods have yielded little success [9]. Furthermore, the
learning algorithms developed for SNNs are often restricted to
very simple and application specific architectures [6], [9].

Artificial evolution through Genetic Algorithms (GAs) is
therefore an interesting method to discover SNNs that
autonomously develop desired behaviors for robots without
imposing constraints on their architecture and functioning
modality. GAs have been used to evolve signs of the weights
(leaving the values of weights constants to 1) of the SNNs for
robots behaviors as in [6]. In the initial phases of our project,
we have used an adaptive online GA to evolve the weight
values and signs of the SNNs in a relatively short time interval
using real mobile robots interacting with their environment. It
was shown that the evolved SNNs had given a very good
performance in noisy and uncertain environments while
outperforming other techniques like fuzzy logic control [10].
However, according to the authors’ knowledge no work has
evolved SNNs for miniaturized robots to navigate in 3D
inaccessible fluidic environments which will be the focus of
our work.

The communication between the robotic team is restricted
by the physical limitations posed by the application domain
and the limited computational infrastructure of the robots.
Therefore the robots will use a simple communication scheme
which is based on indirect communication rather than direct
message passing.

In Section II, we will introduce the robotic agents and we
will present their sensors and actuators as well as the indirect
communication system and we will also present the agent team
operation. Section III will present the used SNNs and their

operation. Section IV will present the used adaptive GA. In
Section V, we will present the experiments and results while
conclusions and future work will be presented in Section VI.

II. THE ROBOTIC AGENTS

A. The Robots Description

The robotic agent team is composed of autonomous and
identical robots where the real robotic agent is based on the
submersible robot shown in Fig. 1a. The robot has roughly a
spherical shape and it has a propulsion system for movement
using pumped water jets. The robot is intended for use in
collective underwater tasks where each robot has proximity
sensors as well as 6 pH sensors to sense the pH concentration
gradient (the pH change is maximum near the fault and it
decreases away from the fault) which is correlated with the
initiation of scale formation. The robot has 6 actuators to
control which are four nozzles for actuation on the horizontal
plane and two buoyancy actuators for actuation up and down
along the vertical axis. The four nozzles actuate in the
horizontal plane by expelling water drawn through an impeller
at the bottom of the unit with a rotating collar selecting the
active nozzle. A syringe draws or expels water through the
bottom of the unit to control buoyancy thus actuating the unit
along the vertical axis. The use of these actuators enables the
robots to move in the 3D space. Each robot is equipped with a
wireless RF communication module that is used to broadcast
simple messages and to generate a gradient based on signal
strength.

B. The Agents Indirect Communication

The communication among agents is an essential concept
that gives rise to collaborative behaviors. In our system, the
communication is restricted by the physical limitations
imposed by the application domain and the limited
computational abilities of the robots. Hence, the primary
concern is to use a simple communication scheme that will
reduce the technological challenges and give a simple robust
protocol of limited information exchange that will result in
agent collaboration. Due to these considerations, we have
chosen the biologically inspired indirect communication that
is based on the observed behavior of the other agents rather
than direct message passing.

We empower the agents with indirect quorum sense
communication by giving them a transmitter that emits a
properly modulated wireless signal and a corresponding
receiver that detects the signal emitted by other agents. Each
agent can emit signals that can be perceived by other agents in
the near vicinity depending on their relative location.
However, there is no explicit or directed information
communication. As although, the information is transferred by
a radio signal for practical implementation reasons, it is not a
deliberate act of communication between agents. The sender
does not necessarily explicitly broadcast its state but allows
others to observe it and the other agents may or may not be

daisy
Rectangle

able to receive the signal. The signal reception depends on the
transmitter power and the receiver sensitivity. The transmitted
signal’s gradual attenuation will create the desired “gradient
field” around the robot that emits the quorum signal.

The robots communication can be summarized as follows:
in case there are no faults (no scale formation), the robotic
agents will wander randomly and try to monitor the
environment for any developing faults. When an agent
perceives a fault signal, it will move towards its source (i.e. the
fault area) and simultaneously releases a “quorum sense
signal”, which ultimately “attracts” other agents. When any of
the other agents perceive the quorum signal, they move
towards its source (i.e. the agent having perceived the fault
signal) and also start emitting the quorum signal themselves.
As quorum signals accrue, more agents are eventually
attracted towards the fault area; when a quorum signal
threshold is exceeded a spatio-temporally ordered community
is formed in the vicinity of the fault and starts repairing it. The
quorum signal threshold is proportional to the fault area as the
larger the fault, the larger the size of the agent community
used to repair this fault. When agents repair the fault the
strength of the original environmental stimulus drops, quorum
signals diminish and hence the community disperses.

(a) (b)
Fig. 1. (a) The robotic agent. (b) Regions K, L and M

C. The Operation of the Robotic Agents Team

The agents can be conceptually divided into three distinct
teams corresponding to the spatial location at a specific
moment and with regard to the proximity to the fault as shown
in Fig. 1b.

The robotic agents are considered located in the inner
region known as region K, if the robotic agents are located in
an area close to the fault such that the fault signal sensed by
the pH sensors exceeds a certain threshold. In this region the
agent will try to move towards the gradient of the sensed “fault
signal”. The agent’s state is transmitted via the wireless RF
link along with quorum sense signal (a “fault_sensed” signal)
thus indicating that the agent discovered a region of interest
and it is now following a pH gradient. The gradient following
strategy in this region is inspired from amoeboid cells [11].
The robotic agent controller for the pH gradient following in
this region is based on SNNs that are evolved by the adaptive
GA which will be described in the next sections.

The agents are considered located in the medium region

known as region L, if the agents’ pH sensors are outside the
range of the “fault signal” but within the range of the RF signal
transmitted by an agent within the K region. The RF antenna
receives the “fault_sensed” RF signal and the agent starts
moving towards the gradient of this signal. Inside the L
region, the agent starts transmitting a “fault_reported” RF
signal as soon as it receives the “fault_sensed” signal.

The agents are considered located in the outer region
known as region M if they cannot receive the “fault_reported”
RF signals transmitted by agents in region L. The M region
agents wander randomly until they perceive some interesting
signal to follow by going to region L.

ITII. SPIKING NEURAL NETWORKS

Networks of spiking neurons are very close to the real
world biological neural network and they are capable of
exploiting time as a resource for coding and computation in a
much more sophisticated manner than virtually all other
common computational models and this is responsible for the
SNN computational power [5], [7].

The state of a spiking neuron is described by the voltage
difference across its membrane, also known as membrane
potential v [6]. Incoming spikes can increase or decrease the
membrane potential. The neuron emits a spike when the total
amount of excitation induced by the incoming excitatory and
inhibitory spikes exceeds its firing threshold 6. After firing,
the membrane potential of the neuron resets its state to a low
negative voltage during which it cannot emit a new spike, and
it gradually returns to its resting potential. The recharging
period is called the refractory period.

There are several models of spiking neurons that account
for these properties with various degrees of detail. In this
paper we will use the Spike Response Model (SRM) [7]. In the
SRM, the effect € of an incoming spike on the neuron
membrane is a function of the difference

. S
s=t—t)

Where 7 is the current time and 7 is the time when the spike
was emitted (firing time). The properties of the function &£ are
determined by the following:

e The delay A between the generation of a spike at the
pre-synaptic neuron and the time of arrival at the
synapse.

® A synaptic time constant 7.

e A membrane time constant 7,

The idea is that a spike emitted by a pre-synaptic neuron
takes some time to travel along the axon and once it has
reached the synapse, its contribution to the membrane
potential is highest as soon as it arrives but gradually fades as
time passes [6]. A possible function &s) describing this
behavior is shown in Fig. 2a and can be written as follows [6]:

e(s)=expl-(s-A)z, I —exp(-(s-A)z, N:s=>A
O:s<A (3

Once a neuron has emitted a spike, its membrane potential

daisy
Rectangle

is set to a very low value to prevent an immediate second spike
and then it gradually recovers to its resting potential. The
speed of recovery depends on the membrane time constant 7,
A possible function 7)(s), for this refractory period is shown in
Fig. 2b and can be written as follows [6], [7].

n(s)=-exp-s/2,])

We can now put together the equations describing the
synaptic contributions and the refractory period to describe
the dynamics of a neuron that has several synaptic connections
from the input neurons. Each synaptic connection has a weight
w;; which can be negative (inhibitory) or positive (excitatory).
The membrane potential of a neuron i at time ¢, is given by

)= w, Y e s+ Y0 ©
t=1

Where j is the pre-synaptic neuron and i is the post-synaptic
neuron. wy; is the weight of the synaptic connection between
neuron i and neuron j. N is the total number of the pre-synaptic
neurons. f. is the current time. s; is an application of (2) for the
pre-synaptic neuron j and s; is an application of (2) for the
post-synaptic neuron i.

As it is complex to solve (5) [12], in each control cycle
which takes 7 time steps we will iterate over £, to find when (5)
exceeds the threshold at the time the spike was emitted. In our
robots the control cycle is 100 ms (according to the processing
time of the used hardware) and each time step is 1 ms.

E

o
@

(@ (®)

Fig.2. (a) Function describing £ (b) Function describing refractory period.

In SNNs, a single spike is a binary event that can encode
only the presence or absence of a stimulus. There are many
ways of mapping the sensor’s analog value to spikes at the
beginning of the control cycle. One method consists of
encoding the strength of the sensor value in the firing delay of
the neuron. In this paper, we use this method for mapping the
sensor’s analog values to spikes. This coding system known as
“delay coding” has been used by many researchers as it is
simple and it is one of very few coding methods that might
theoretically be used for very fast neural computation [12]
which is required in our problem space.

For an analog input sensor value x; to pre-synaptic neuron j,
the firing time #/ can be calculated as follows [12]:
f—

t; =T —kx; ©

Where T is the time of the control cycle and & is a suitable
scaling factor. At the end of the control cycle, we need to
convert the firing of the post-synaptic neuron i to analog

outputs for the actuators. We are going to use the delay coding
again, so the analog output y; to the actuator connected to
neuron i can be written as follows:

4!
_r-ty 0
C

i

Where c is a suitable scaling factor, t,fis the firing time for
the post-synaptic neuron i.

The robotic agents will use the SNN controllers to follow
the pH gradient in the K region. The pH gradient following
behavior will have inputs from 6 pH sensors and will control 6
actuators corresponding to 4 collar positions (for navigation in
the horizontal plane) and two buoyancy controls (for
navigation in the vertical plane). The generic architecture of a
SRM SNN using delay coding is shown in Fig. 3, where in our
SNNs, we use a two layer SNN, in which the pH sensors’
analog value will be the inputs to the SNN’s pre-synaptic
neurons and the analog values from the post-synaptic neurons
will be the outputs to the 6 actuators.

ANALOG INPUT INPUT OUTPUT OUTPUT ANALOG
SENSORS SPIKES UNITS UNITS SPIKES OUTPUT
t
S
Xy l‘_’ l Y1
o i
|- |
* f f vz
. . . .
. . . .
. . . .
L Yi
1] i
T

Fig.3. SRM SNN using delay coding architecture.

IV. ADAPTIVE GENETIC ALGORITHM

The GA will be used to evolve the values and the signs of
the weights of the SNNs as well as the weight existence; the
weights take any value between -1 and +1 where weights with
zero value will be removed from the SNN to optimize its
architecture. As the SNN is having 6 pH sensors and 6
actuators, therefore the fully connected SNN will have 36
weights to evolve. Therefore, the GA chromosome which
represents a possible solution for the problem consists of all
the 36 weights in the SNN. We used binary coding and we
represented each weight by a small number of bits (3 bits) to
reduce the chromosome length (chromosome length
=3*36=108 bits). An n-bit string can accommodate all
integers up to the value 2" -1. So using 3 bits can represent 7
integer values, where a weight of +1 will be equivalent to an
integer value of 7, a weight of -1 will be equivalent to an
integer value of 0. In this way we can evolve the signs and
values of the weights of the SNN. When testing a
chromosome, the weight binary value is mapped back into a
real weight value between -1 and +1 and applied to the SNN

daisy
Rectangle

controller which the robot uses to move in the region K. For
the pH gradient following behavior, the fitness of each
chromosome was evaluated according to how well the robot
followed the pH gradient using the shortest path to arrive to
the fault.

Standard GAs that use fixed crossover and mutation rates
are widely known to be slow as they usually require big

populations and they converge after a large number of

generations. In this paper, we will use an adaptive GA which
tries to maintain a limited amount of exploration and diversity
in the population. These requirements mean that the
chromosome and population size (we used a small population
size of 50) should be kept relatively small, so that progression
towards near-convergence can be achieved within a relatively
short time [13]. Similarly the genetic operators (crossover and
mutation) should be used in a way that rapidly achieves
high-fitness individuals in the population [13]. In our adaptive
GA, we will adaptively change the crossover and mutation
probabilities based on Srinivas method [14]. This method
helps us to achieve good crossover and mutation parameters
that aid convergence in a short time interval. In order to vary
P, (crossover probability) and P, (mutation probability)
adaptively to prevent premature convergence of the GA, it is
essential to be able to identify whether the GA is converging
to an optimum [14]. One possible way of detecting
convergence is to observe the average fitness value f* of the
population in relation to the maximum fitness value f,,,, of the
population. f,,,, - f* is likely to be less for a population that has
converged to an optimum solution than that for a population
scattered in the solution space. P, and P, are defined as
follows [14]:

Sow - F" re o)
P. - max ,: 2
(max - f‘ f f
=1 fr< f7 @®)
Tuwe — T -
B ot o« f5
" W -1 P
P, =05:f<f’)

Where f” is the larger of the fitness values of the solutions
to be crossed. f is the fitness of the individual solutions. The
method means that we have P.and P,, for each chromosome.
The type of crossover was chosen to be a one point crossover
for computational simplicity and real time performance.

One of the goals of this approach is to prevent the GA from
getting stuck in a local optimum. For the average and sub

average fitness chromosomes, we employ a high P, value of

0.5 to introduce new genetic material without reducing the
search process to a random process [14]. The same for the P,
which takes a value of 1.0 to ensure that average and sub
average fitness chromosomes undergo crossover.

V. EXPERIMENTS AND RESULTS

In order to test and evaluate the various concepts of the
project, we will use graded testing platforms which will start
by a real world 3-D simulator to establish all the project

concepts and evaluate their success. After this, we will try to
bridge the gap between simulation and the real world by
linking the 3-D simulation environments to the robots
hardware, sensors and actuators to be part of the simulation
environments to form a hardware in the loop simulation. This
will help to develop realistic controllers and communication
modules for the robotic agents so that they can operate
successfully in the real test bed shown in Fig. 4a which
consists of a Plexiglass™ tube of 2m long and 50cm diameter.

e

Fluid drain/

g b)
Fig.4. (a) The real test bed. (b) The 3D simulator of the test bed.

This section will report on the experiments and results
obtained from the first test bed of the project within the
simulation environment shown in Fig. 4b. The developed 3D
simulation environment includes a realistic physics model, an
accurate real-world scale and the ability to log the status of
every agent in terms of position, sensor and actuator values
time stamped to the nearest millisecond. The simulator
instantiates a TCP socket server that allows robot controllers
running in remote machines or written in different
programming languages to interact with it. In this way, raw
sensor data is accessed by controllers through a proxy and
actuator commands are passed back to the simulation engine.
We also developed a proxy to the simulation engine that acts
as a serial interface wrapper (i.e. RS232) which enables us to
exchange data between the simulator and the hardware
implementations of the controllers (i.e. FPGA boards) making
hardware in the loop simulation possible.

Due to the limited space we will only present proof of
concept experiments to the main project components.

Starting Position 1
3
Starﬁng{osition 2

The Fault

Y Axis

X Axis

Fig.5. The evolved SNN path when started from different positions.

Fig. 5 shows one of the partially evolved SNN paths when
started from different starting positions. For each starting
position, we calculated the average and standard deviations

daisy
Rectangle

from the optimum path (which correspond the straight path
between the starting position and the fault). The robot was
always able to follow successfully the pH gradient to the fault
with average deviation of 1.6 cm and a standard deviation of
0.7 from the optimum path.

In order to demonstrate the success of the agent
communication and collaboration to repair faults, we show in
Fig. 6 one representative scenario from the numerous
scenarios we have implemented and tested. Fig.6 illustrates
the robotic team’s capability to cooperate in order to detect
and repair a single fault in a pipe filled with quasi-static fluid.
The size of the fault area in Fig.6 will need three robotic
agents to repair (this will vary with different sizes of the fault
area). The 4 robots shown in Fig.6 were wandering randomly
in the environment monitoring for possible faults before the
introduction of the fault associated with the scale formation
which resulted in the creation of the pH gradient. Fig.6a shows
a snapshot of the environment at a particular time t;, where
three robots are in the M region (robots 1,2,4) surveying the
environment while robot 3 has detected a fault in region K and
heads towards the fault where it transmitted via the wireless
RF link a “fault_sensed” signal. Fig.6b depicts the situation at
1, where robots 1 and 2 are in region L as robot 2 received the
“fault_sensed” signal first and transmitted the
“fault_reported” RF signal which is picked by robot 1 and
hence both robots will follow their sensed RF gradient till they
enter region K. Fig. 6¢ shows a snapshot of the environment at
t; where robots 1,2,3 arrive to the fault and repair it and hence
the pH gradient disappears and the robots continue wandering
the environments. Note that in this experiment robot 4 was
always in region M as it did not receive either the pH or RF
signals.

(b)

Fig.6. Agents collaboration to repair faults.

VI. CONCLUSIONS

In this paper, we have introduced a novel framework for
collaborating multiple robotic agents that operate within
inaccessible environments. Each robotic agent has limited
computation and battery power and consequently SNNs were
chosen to provide efficient autonomous navigation to follow
the pH gradient within the K region and arrive to the fault. The
weights of the SNN were evolved using adaptive GA that can
converge relatively fast (while escaping local minima) to
suitable solutions that will allow the robots to complete their
desired tasks. The members of the agent team communicate

and collaborate using indirect communication to move
towards the site of fault in order to repair damages. Although
the application of our work is the localisation and repair of
scale formations in tanks and pipes within inaccessible fluidic
environments, the concepts of the project can be extended to
operations within other inaccessible environments such as
deep water operation, cleanup of nuclear waste, etc.

This paper has presented experiments and results
evaluating the success of the main project concepts within a
true 3-D fluidic simulation. We are currently working on
testing the whole system within the real test bed shown in Fig.
4a and we will report on these results in subsequent
publications.

ACKNOWLEDGMENT

We would like to thank John Hallam for his great help and
support with the Hydron robots used in this project.

REFERENCES

[1] J. Cowan and D. Weintritt, Water-formed scale deposits, Huston,
Texas: Gulf Pub. Co, 1976.

[2] M. Fontana, Corrosion Engineering, New York: McGraw Hill, 1996.

[3] T. Fukuda, A. Kawamoto, F. Arai, and H. Matsuura, “Steering
Mechanism of Underwater Micro Mobile Robot in Water,”
Proceedings of the 1995 IEEE International Conference on Robotics
and Automation, Nagoya, Japan, May 1995, pp. 363-368.

[4] S. Guo, T. Fukuda, and K. Asaka, “A new type of fish-like underwater
micro robot,” IEEE/ASME Transactions on Mechatronics, vol. 8,
pp.136-141, 2003.

[S] W.Maass, "Networks of spiking neurons: the third generation of neural
network models," Transactions of Interational Society for Computer
Simulation, vol. 14, pp. 1659-1671, 1997.

[6] D. Floreano and C. Mattiussi, "Evolution of spiking neural controllers
for autonomous vision-based robots," Proceedings of the International
Symposium on Evolutionary Robotics, 2001, pp. 38-61.

[71 W. Maass, "On the computational complexity of networks of spiking
neurons," in Advances in Neural Information Processing Systems, vol.
7, 1995, pp. 183-190.

[8] T.Lehmann and R. Woodburn, "Biologically-inspired on-chip learning
in pulsed neural networks," in Analog Integrated Circuits and Signal
Processing, vol. 18. 1999, pp. 117-131

[91 H. Burgsteiner, “Training networks of biological realistic spiking
neurons for real-time robot control,” Proceedings of the 9th
International Conference on Engineering Applications of Neural
Networks, Lile, France, August 2005.

[10] H. Hagras, A. Pounds-Cornish, M.Colley, V.Callaghan and, G. Clarke,
“Evolving Spiking Neural Network Controllers for Autonomous
Robots, ” Proceedings of the 2004 IEEE International Conference on
Robotics and Automation, New Orleans, USA, April 2004, pp. 4620-
4626.

[11] J. Dusenbery, “Performance of Basic Strategies for following Gradients
in Two Dimensions,” Journal of theoretical Biology, vol. 208, pp.
345-360, 2001.

[12] B. Tonkes,

Proceedings of the 8

1997, pp. 80-84.

G. Linkens and O. Nyongeso, "Genetic algorithms for fuzzy control,

part II: online system development and application," IEE Proceedings

on Control Theory Applications, pp. 177-185, 1995.

[14] M. Srinivas and L. Patnaik, “Adaptation in Genetic Algorithms,” in
Genetic Algorithms for Pattern Recognition, S. Pal and P. Wang, Eds.
Florida: CRC Press, 1996, pp.45-64.

"Simulation issues in spiking neural networks,"
" Australian Conference on Neural Networks,

[13

—

daisy
Rectangle

