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Abstract 

Wireless networks allow the deployment of sensing 
systems and actuation mechanisms at a much finer level of 
granularity than has been possible before. This paper is 
focused on connecting sensor data with actuators through 
a decision-making layer with learning capability. The 
decision making process regarding the provision of 
agricultural resources is extended this by on-line 
monitoring significant plant and environmental parameters 
and by applying machine-learning algorithms for inducing 
rules by analysing logged datasets to determine the 
significant thresholds of plant-based parameters. 

1 Motivation 

Currently, there are few discussions on the integration of 
the natural environment into pervasive computing 
applications. In this article, we discuss how ambient 
intelligence technology could be used to encompass plant 
requirements, to realize intelligent agricultural 
environments by establishing a three-way interaction 
between plants, people (end-users and domain experts) 
and objects (Fig.  1).  

 
  
Fig.  1 Hybrid systems with a three-way interaction 
between plants, people and objects 
 

Wireless networks allow the deployment of sensing 
systems and actuation mechanisms at a much finer level of 
granularity, and in a more automated implementation than 
has been possible before. Sensors and actuators can be 
used to precisely control for example the concentration of 
fertilizer in soil based on information gathered from the 
soil itself, the ambient temperature, and other 
environmental factors. Incorporating feedback into the 
system through the use of sensors, actuators, and 
adaptation algorithms will allow a more fine-grained 
analysis that could adjust flow rate and duration in a way 
that is informed by local conditions. One can imagine the 
use of such precise information in particularly sensitive 
high value crops such as wine grapes, citrus fruit and 
strawberries. This agricultural treatment is known by the 
term precision agriculture [1]. 

The interaction of artefacts and plants in the digital 
space entails the triggering of decision-making 
procedures. For example, upon determining the local state 
of a plant a decision may be required for an action to be 
followed. In the case of an artefact (e.g., a lamp or valve) 
the local decision-making (or resource management) 
mechanism resolves conflicts when multiple augmented 
plants (through superimposition of a technological layer 
and henceforth mentioned as ePlantations) request a 
common resource (e.g., light or water). Distributed 
mechanisms can also be considered to alleviate similar 
situations, when ePlantations and related artefacts are 
coordinated for detecting/maintaining a global 
state/objective in the context of a group of distributed 
nodes. 

This paper is focused on connecting sensor data with 
actuators through a decision-making layer with learning 
capability. The decision making process regarding the 
provision of agricultural resources is originally based on a 
rule-based knowledge obtained either from the literature 
or from expert/domain knowledge through a manual and 
time-consuming characterization process. We extend this 
by on-line monitoring significant plant and environmental 
parameters and by applying machine-learning algorithms 
for inducing rules by analysing logged datasets to 
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determine the significant thresholds of plant-based 
parameters. 

The remainder of the paper is organised as follows. 
Section 2 discuss the rationale behind this work and 
discuss other similar endeavours with an emphasis to the 
application of data mining techniques. Section 3 describes 
the basic modules of the system architecture developed for 
on-line monitoring, logging and proactively responding to 
the needs of a plantation according to the rules that ar 
stored in its knowledge base. An analogy with a context 
management process is also identified. Towards to a more 
autonomous system with self-adaptation and self-learning 
characteristics, we have explored ways of incorporating 
Machine Learning aspects in the system as discussed in 
section 4. Finally the conclusions of our work are 
presented. 

2 Problem Statement and related work 

The complexity of the parameters/signals to be monitored 
and controlled in an agricultural environment, coupled 
with the possible imprecision of the information delivered, 
makes hybrid system context too complex to be pre-
programmed as a fixed set of parameters and rules. A first 
step towards alleviating this problem is to replace the 
typical, explicitly coded actions to situations and 
conditions (which can only prescribe a fixed set of 
variables) with a multi-level and more knowledge-
intensive decision-making framework coupled with 
reasoning under uncertainty and machine learning 
techniques. In our approach we apply machine-learning 
algorithms (discussed in section 4) for inducing rules by 
analyzing logged datasets to determine the significant 
thresholds of plant-based parameters.  

A research question is to discover the criteria under 
which individual plants are grouped into the same 
ePlantation. The most obvious criterion is spatial 
proximity, as one anticipates that neighboring plants will 
have similar requirements for resource usage. 
Nevertheless, the approach allows us to group plants by 
applying other proximity criteria, such as state of 
evanescence, age, health status etc, and allowing adaptive 
resource allocation according to context specific needs. 

There are several applications of data mining to 
particular agricultural problems and issues. An early 
application considered a program (AQ11) to identify rules 
for diagnosis of soybean diseases by initially exploiting 
expert data (questionnaires) and using similarity-based 
learning [6]. The resulting rules outperformed the expert 
collaborator rules who eventually adopted the discovered 
rules in place of his own. In [5] another application dealt 
with the dairy herd culling, initially exploiting a Livestock 
database. Domain expertise is considered essential to 
complement data transformation and machine learning 
processing skills required to prepare and process the data 
sets.  

Considering the sensitivity of plants on the changing 
climatic conditions, weather imponderables, pests etc, a 
system must be flexible and quick responding. In [12], this 
complexity/uncertainty is overcome by using fuzzy 

controllers for the sophisticated control of agricultural 
systems. 

The above mentioned applications are based on the 
model of exploiting previous mined information offline so 
as to produce classifications, rule sets or clusters. New 
(and perhaps more precise) results are provided using the 
same method and adding additional data to the gathered 
information. This offline trend inherits the disadvantages 
of an offline learning scheme. On the other hand, self 
/online- learning techniques seem to be adaptive and 
reliable in dynamic environments such as an agricultural 
farm.. 

 Although not being a direct agricultural application, in 
[8], the industrial issue of the production line part of 
classification of agricultural products, a neural network or 
fuzzy logic based technique outperforms standard 
template matching and fixed object modeling techniques. 

According to [7], sensing precision is related to system 
monitoring precision. In order to achieve that, the system 
not only must be equipped with proper sensing 
components but it must also ensure that this sensing 
capability is sustained over time, taking under 
consideration the calibration problem. A prominent 
example of work related on energy resource sustenance, 
automatic sensor calibration (on both configuration and 
dynamic response phases) and finally system tolerance (on 
both sensor failures and inappropriate development) is the 
PlantCare system [4].  

3 System Description 

In the past we presented the enabling infrastructure and 
tools that are used to augment a plant and enable it to 
interact with AmI devices and artefacts [3]. The work 
presented in this paper extends the scope of this research 
and applies ubiquitous computing technology to support 
resource management in a plantation, which is considered 
as a collection of individual plants. In this case, the 
approach of turning each plant into an ePlant and then use 
the plug/synapse model [9] to achieve collective resource 
management does not scale well, due to the large number 
of resulting interactions among ePlants and artefacts. 
Since considering each plant individually does not yield 
great benefit, we propose to group plants into ePlantations 
and enable each ePlantation to communicate as an 
individual with artefacts. In this way, we can design a 
scalable system by allocating a set of resources to each 
ePlantation and then use ePlantation-OS to collectively 
manage ePlantations. Instead of using a number of devices 
coupled with each plant, a careful topological distribution 
of the devices among an area covered with these plants 
could result a relevant and satisfactory feedback to the 
system. 

In Fig. 2 a graphical representation of an ePlantation is 
presented: an area containing n plants is covered by m 
Motes, each of which uses a versatile data acquisition 
board (DAB). Motes are distributed autonomous devices, 
equipped with a radio transceiver or other wireless 
communications device (in this case a two-way ISM band 
radio transceiver), a fully programmable small 
microcontroller, flash memory for over-the-air-
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programming and data logging and finally an energy 
source (usually a battery). Each DAB can carry a number 
of different sensor devices, thus, it can be shared among 
the plants of an ePlantation.  

Each Mote communicates with a Mote Gateway. The 
Mote Gateway allows for the aggregation of the mote 
network data on an IPAQ (can be any other standard 
platform like a PC), on which ePlantation-OS is running. 

 
Fig.  2: graphical representation of the ePlantation module 
 

In our approach, an application is realised through the 
cooperation of ePlantations with artefacts in the form of 
established logical communication links between services 
and capabilities offered by the artefacts and the states and 
behaviours inferred from the plants (in each case 
services/states are provided through access points called 
plugs). The plug/synapse model provides a conceptual 
abstraction that allows the user to describe mixed society 
ubiquitous applications. To achieve collective desired 
functionality, one forms synapses by associating 
compatible plugs, thus composing applications using 
artefacts and ePlantations as components Figure 3 
illustrates, by using a puzzle metaphor, the example 
application logic in terms of associations made between 
plugs of an ePlantation and plugs of the eIrrigationSystem, 
according to the plug/synapse model. When the 
RCNeedIrrigation plug will be set, for example, solenoid-
3 plug will drive the corresponding solenoid to turn on the 
irrigation for only the RC zone (an ePlantation instance). 

 

Fig.  3 Schematic illustration of the example 
application 

3.1 Context Management Process 

At a high level, the process performed by the distributed 
system presented in Fig. 2 can be viewed as a 
plant/environmental context management process. We 
model this process as a measurement-translation-
reasoning-actuation control cycle. A mechanism for low-
level context acquisition, which reads plant/environmental 
signals from sensors, starts this cycle. Signals range from 
selected electromagnetic wavelengths through to volatile 
organic molecules. This information is probably not 
initially in a format that can be used by the system in 
order to make decisions or reach a conclusion. In a second 
phase the signals are interpreted and high-level context 
information is derived. For example, temperature and soil 
moisture sensors return an analogue signal (voltage value) 
which must be then converted, after a calibration phase, to 
a digital format. This signal conditioning phase is usually 
performed within the motes using specialized Analog to 
Digital conversion circuitry, implemented in such a way 
as to optimize both network data throughput and system 
battery life, by avoiding unnecessary send/receive 
messages. Aggregation of context is also possible, 
meaning that semantically richer information may be 
derived based on the fusion of several measurements that 
come from different homogeneous or heterogeneous 
sensors. The determination of photo-oxidative stress, for 
example, requires monitoring of chlorophyll fluorescence 
in conjunction with ambient light level signals so as to 
adjust supplementary light levels. The aggregation of 
context is an operation that is performed at the higher 
levels of the system, usually at the IPAQ node.  

Having acquired the necessary context we are in a 
position to assess the state of the plants and decide 
appropriate response activation. Adopting the definition 
from Artificial Intelligence, a state is a logical proposition 
defined over a set of context measurements [11]. This 
state assessment will be based on a set of rules, which are 
either obtained from plant science research as part of a 
time consuming and labor intensive manual process, or as 
part of a more advanced scheme by utilizing learning 
capabilities within the system. The low (sensor) and high 
(fused) level data, their interpretation and the decision-
making rules are encoded in an ontology.  

The reaction may be as simple as to turn on a light, or 
to send a message to the user, or a composite one such as 
a request to add water directly to the soil in the pot in case 
of water stress, or as spraying mist in case of heat stress. 
This means that the system has to differentiate between 
the two kinds of water stress and evaluate the appropriate 
response. Such a decision may be based on local context 
or may require context from external sources as well, e.g., 
a weather station supporting prediction of plant disease 
spreading. 
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3.2 Basic Software Modules 

Τhe deployment of mixed societies composed of plants 
and artefacts is supported by ePlantation-OS which is a 
target application modification of the GAS-OS [9]. The 
ePlantation-OS is additionally composed of the following 
modules: 
Plantation state diagnosis module: responsible for the 
local assessment of the state of each ePlantation. This 
module applies a normalization algorithm to all local 
states so as to determine the global state of the 
ePlantation. Then, a set of actions may be carried out at 
the ePlantation level (e.g., application of water, increase in 
light intensity). A rule-based knowledge base is required 
for the reasoning process; 
Machine Learning(ML) module: This module runs a ML 
scheme that uses different ML techniques (clustering, 
classification) so as to produce more {plant or 
environment}-oriented rules that will benefit to the 
adaptation of the system and increase the precision of the 
system.  
Interaction module: it implements the interaction scheme 
between plants and artefacts, in the form of the 
Plug/synapse model [9]; 
The ontology manager is responsible for the interaction 
of the nodes in a mixed society of plants and artefacts 
under the definitions of terms and relationships found in 
the PLANTATION ontology and for the management of 
this ontology. Key knowledge encoded in the ontology is 
the characterization information that relates a plant’s 
status to the measurements provided by one or more 
sensor systems in the form of given threshold values or 
range of values or rules. This knowledge is required for 
the plant behaviour/state assessment 

The outline of the ePlantationOS architecture is shown 
in Figure 4.  

Process
Manager

Peer-to-Peer
Communication Module

Hardware State
Manager

Ontology
Manager

Jess Inference
Engine

Rule
Manager

PLANTS
ontology

Rule
base

Interaction
Module

 Fig.  4 ePlantation-OS architecture outline 

 
The ePlantationOS encompasses a Communication 

Module, a Process Manager, a Hardware State Manager, 
an Ontology Manager a Rule Manager and the Jess 
Inference Engine. The Communication Module [13] is 
responsible for communication between different 
ePlantation/Artefact nodes. This module implements 
algorithms and protocols for wireless, connectionless 
communication (using the 802.11b/g protocol) as well as 
mechanisms for internal diffusion of information 

exchanged. The Process Manager is the coordinator 
module of ePlantationOS. Some of its most important 
tasks are to manage the processing policies of the 
ePlantationOS, to accept and serve various tasks set by the 
other modules of the kernel and to implement the 
Plug/Synapse model. The Hardware State Manager is a 
repository of the hardware environment 
(sensors/actuators) inside ePlantationOS reflecting at each 
particular moment the state of the hardware. Through the 
Ontology Manager ePlantations/Artefacts can obtain 
context-awareness and manifest higher-level behaviour 
[14]. Applications state their resource or service needs 
through concepts that are part of the artefact’s ontology. 
The decision-making process is based on a set of rules in 
operational representation forms that are applied on 
existent knowledge and allow the use of the ePlantation 
ontology for reasoning providing inferential and 
validation mechanisms. The Inference Engine is the 
module of the ePlantationOS that supports the decision-
making process. This module exploits the Jess rule engine 
(Java Expert System Shell) [15]. The execution of this 
module is started based on the initial facts (defined by the 
Rule Manager from knowledge emerged from the 
PLANTS Ontology through the Ontology Manager) and 
the rules stored in the rule base in Clips format. 

The Inference Engine module is informed for all the 
changes of parameters’ values from sensor’s 
measurements through the Hardware State Manager. 
When the Inference Engine is informed for such a change 
it runs all its rules. When a rule is activated the Inference 
Engine informs for the activation of this rule and for the 
knowledge that is inferred the Process Manager, that is 
responsible to transfer this knowledge to anyone that 
needs it. A graphical depiction of the Inference Engine is 
in Fig. 5. 

 
Fig.  5 Inference Engine 

3.3 System operation 

In this subsection we describe the typical operation flow 
of the ePlantation system. Starting, each plant of a set of m 
plants is monitored by a set of sensing devices. These 
input devices allow the system to receive precision data, 
which is crucial for correct plant signal translation. 
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Precision agriculture systems require the remote detection 
of exogenous plant signals (intrinsic signalling 
compounds are not considered because the insertion of 
sensors within the plant tissue not only wounds the plant 
but provides an effective entry point for pest and disease). 
A range of plant signals has been considered to indicate 
the plant input requirements. The evaluation of plant 
signals for development was carried out using the 
following criteria: 

• Is the signal produced in accordance with the 
plant stress/ need? 

• Do COTS sensors exist for the signal? 
• Do COTS sensors exist that detect the signal in 

the range emitted by the plant? 
• How rapidly is the signal produced following the 

initiation of the stress/need? 
• Can the plant signal be analysed to determine 

threshold levels for actuator induction? 
• Can COTS actuator systems remediate the plant 

requirement? 
The test case presented in this paper considers the 

following set of sensing devices: fluorescence meter, 
ambient light, thermistors and soil moisture sensor. These 
devices output five low level values: chlorophyll 
fluorescence, light PAR, ambient (environment) 
temperature, plant temperature and soil moisture value. 
The chlorophyll fluorescence (Electron Transport Rate 
parameter) acts as a general plant health indicator and 
provides a reference for the machine learning process to 
be applied. The mote Gateway proceeds in real time the 
data received from every mote towards the main 
processing unit the ePlantation-OS is running on. 

Using the chlorophyll fluorescence value, the ETR 
high level attribute is computed. This attribute gives a 
clear estimation about each plant stress condition. 
According to this estimation, the system can compute a 
Boolean “isHealthy” attribute representing the state of 
each plant. The state of the ePlantation is then estimated 
using all data recently received (Plantation state diagnosis 
module). This estimation is done by applying a mean 
value calculation to every mote’s acquired data set. In 
general, this is analogous to estimating an average value 
of n ePlants. After estimating the ePlantation overall state, 
a set of actuation rules is applied. The starting rules of the 
plant assessment and treatment as used in this work is 
stated below:  
 
If oil moisture < 60%   s
Then  <request Irrigation>. 
 
If ot HEALTHY   n
Then  <report to plant expert>. 
 

The ML module aims to improve the effectiveness of 
the system a) by reducing resource consumption (water, 
fertilizer etc) and b) by eliminating the time plants are 
stressed in any way. This target can be achieved by 
creating new plant assessment rules using other context 
information (e.g. plant/ambient temperature) and then 
adapting the rule base (especially the actuator action set) 
to these changes.  

4 Machine Learning 

In order to apply machine learning, a java invoker of the 
WEKA core was set on the ePlantationOS. In general, the 
New Zealand-developed WEKA (Waikato Environment 
for Knowledge Analysis) [10] is a collection of machine 
learning algorithms written in Java. Weka is an open 
source software providing user extendable algorithms, 
making the tool well-suited for developing new machine 
learning schemes. It contains tools for data pre-processing, 
classification, regression, clustering, association rules, and 
visualization.  

The first step in using the workbench is to invoke the 
workbench conversion programs to prepare data (usually 
provided in spreadsheet or database format) into a file 
format which all of the different machine learning 
techniques recognise. It is then possible to run a variety of 
machine learning schemes on the data and to view and 
compare the results. The schemes work in many different 
ways and no single scheme will outperform the others on 
all datasets. Next, through the Weka core, the dataset is 
used to construct a classification model which is used by 
the decision making module.  

In general, using the collected data, data mining can be 
applied either by running a decision making 
(classification) algorithm either by running a clustering 
algorithm. The former results a set of rules and the latter 
results clusters of relation. The rule set can enhance or 
even replace the obsolete rule set used to decide either a 
particular state of the ePlantation such as the isHealthy 
attribute, or the target action rules (such as Irrigation and 
Misting). On the other hand, clustering based on particular 
proximity criteria-attributes may lead not only to rule 
activation threshold refinement but also to detection of 
new –non obvious- proximity rules. In this paper, we 
present the results and conclusions after applying the EM 
clustering algorithm, discussed in the next paragraph.  

4.1 Dataset 

The dataset used for the machine learning application was 
collected in the context of the PLANTS project [2] where 
the plant monitored was a strawberry plant at an early 
development phase. A segment of the dataset, used for 
running the machine learning algorithms with the WEKA 
workbench, is given in Table 1. 
 
Table 1. A segment of the dataset, used for running 
machine learning algorithms with the WEKA 
 

ETR isHealthy AmbC Plant C Moisture 
387,15 OK 22,37 21,65 0,65 

432,9 OK 22,37 21,65 0,64 

412,83 OK 21,65 21,16 0,64 

372,36 OK 21,65 20,92 0,64 

382,41 OK 21,28 20,80 0,62 

363,13 OK 21,28 20,80 0,62 

432,95 OK 22,01 21,16 0,62 

422,3 OK 22,01 21,16 0,61 

435,31 OK 22,01 21,04 0,61 
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448,31 OK 22,01 20,92 0,61 

463,81 OK 22,01 20,92 0,60 

422,99 OK 22,01 20,67 0,60 

315,88 OK 21,65 20,43 0,59 

305,78 Not OK 21,28 20,43 0,59 

324,47 OK 21,65 20,92 0,92 

436,07 OK 22,74 21,52 0,93 

423,33 OK 23,10 21,40 0,93 

498,06 OK 22,74 21,65 0,93 

534,43 OK 23,46 22,01 0,94 

532,53 OK 22,37 21,16 0,94 

482,72 OK 22,74 21,40 0,94 

508,19 OK 22,37 20,67 0,94 

510,98 OK 22,01 20,67 0,94 
 
The column labelled as ETR is calculated by 

combining the chlorophyll fluorescence and light PAR 
measurements. The rule then that defines the status of the 
plant  (Healthy, Not Healthy) is as follows: 

 
If ETR <= 310  
Then  <deactivate isHEALTHY>. 

 
The above table is translated into the ARFF format, an 

attribute/value table representation that includes header 
information on the attributes’ data types. It is then 
possible to run a variety of machine learning schemes on 
the data and to view and compare the results. 

4.2 EM Clustering 

The aim of this work is to demonstrate the applicability of 
clustering to the particular application and not to find the 
best suitable algorithm for clustering plant properties. 
Therefore, we used  the Expectation Maximization (EM) 
algorithm, which is a popular statistically formalized 
method. This algorithm presents good convergence 
properties and is commonly used for several partitional 
clustering applications.  
The EM Clustering algorithm was set according to the 
WEKA predefined parameters (maxIterations=100, 
minStdDev= 1.0E-6, numClusters=-1, seed=100), 
according to the (low level) attributes of plant 
temperature, environment temperature and soil moisture. 
The high level values of ETR and isHealthy were ignored 
during the clustering procedure. The result is a four cluster 
set, with each cluster characteristics presented in Table 2.  
 

Table 2: Results applying EM clustering using default 
settings 

 
 Attribute Normal 

Distribution. 
Mean 

StdDev 

Cluster: 0 Prior probability: 0.2486 
 AmbientC 20.285 0.9228 
 PlantC 18.8293 1.9115 
 SM 0.6044 0.0769 
Cluster: 1 Prior probability: 0.2837 
 AmbientC 20.9822 0.6592 
 PlantC 19.8459 0.7244 

 SM 0.7475 0.0424 
Cluster: 2 Prior probability: 0.0559 
 AmbientC 26.2583 1.3866 
 PlantC 28.4052 1.3866 
 SM 0.6534 0.1039 
Cluster: 3 Prior probability: 0.4118 
 AmbientC 23.484 0.7129 
 PlantC 21.9673 1.7046 
 SM 0.6798 0.0598 
 
Fig.  6 depicts a plot of the data set instances in respect of 
soil moisture value (axis x) and temperature difference 
(AmbC-PlantC)  (axis y). Axes and values are added for 
clarity. The dotted line boundaries are placed so as to 
approximately separate the four clusters. The different 
colors indicate the cluster a data instance belongs to. The 
colors of black, blue red and cyan refer to cluster C0, C1, 
C2 and C3 respectively.  
 

 
Fig 6.  Clusters in respect of soil moisture and temperature 
difference  
 
As the plot depicts, each cluster is generally allocated in 
one of the four areas separated by the dotted vertical and 
horizontal lines. What is notable is that cluster 4 contains 
approximately the 95% of the instances marked as healthy 
(attribute isHealthy=TRUE). The next step of the 
procedure was to use expert knowledge to analyze all 
instances marked as not healthy (attribute 
isHealthy=FALSE) according to the necessary treatment 
so as to become healthy.  
What was found is that all instances belonging to clusters 
1 and 2 were needed irrigation treatment. For cluster 0, 
82% of the instances required misting treatment and the 
rest were all healthy. Finally, 9% of the instances 
belonging to cluster 3 were requesting irrigation and 3% 
requesting misting. All other instances were stated as 
healthy. These facts lead us consider two new high level 
attributes: HeatStress and WaterStress. According to the 
cluster approximant boundary lines, we assume the 
following assessment rules:  
 
If oil moisture < 62%   s
Then <WaterStress is Activated>. 
If (AvgPlantC – AmbC) > 0.84oC And Soil 

ture > 62% Mois
Then < HeatStress is Activated> 
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According to these rules, two plant treatment actions may 
occur: 
 
If WaterStress is Activated>   <
Then <request Irrigation> 
If < HeatStress is Activated>  
Then  <request Misting>. 
 

What is considerable is that the irrigation treatment 
rule matches (with a small deviation of 2% 
approximately) to the starting rule of the plant assessment 
provided by experts and presented in paragraph 3. 
Although the abovementioned rules where reasoned by 
experts as rational to use, further work is need towards the 
verification of the above estimation. This includes a) the 
execution of long haul experimentations to verify 
repeatedly the assessments and to mask out possible errors 
or aberrations and b) generalization of the process for 
different plant variations and different environmental-
climatic conditions; a process that could finally lead to the 
substantiation of the above rules.  

5 Conclusions and future work 

Moving our research towards to a more autonomous 
system with self-adaptation and self-learning 
characteristics, we have been exploring ways of 
incorporating learning capabilities in the system. In this 
paper machine-learning algorithms have been used for 
inducing new rules by analysing logged datasets to 
determine accurately significant thresholds of plant-based 
parameters. In a more advanced scheme when a new plant 
variety is introduced, an automatic characterisation phase 
could be initiated during which the proper growing 
conditions will be determined. The chlorophyll 
fluorescence parameter forms the backbone of the 
feedback mechanism to determine the photosynthetic 
efficiency of the plant, and from this determine how 
productive the plant is under the given conditions. Such an 
approach is currently under investigation. 

To counter with the uncertainty of data work is in 
progress to define a model describing the uncertain 
context. Quality indicators can be specified so that the 
end-user (either an application or a person) can make 
judgements on the confidence level that the information 
entails. Uncertain context mechanisms such as 
probabilistic logic, fuzzy logic and Bayesian networks can 
be evaluated and applied accordingly. 
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