
Towards Developing Micro-Scale Robots for Inaccessible
Fluidic Environments*

Martin Colley, Gustavo de Souza, Hani Hagras,

Anthony Pounds-Cornish, Graham Clarke, Victor Callaghan
Department of Computer Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK

{martin, gdesou, hani, apound, graham, vic}@essex.ac.uk

* 0-7803-8566-7/04/$20.00 2004 IEEE.

Abstract - In this paper we introduce the development of
dedicated hardware capable of controlling autonomous
micro-scale robots for fault detection/repair in complex
inaccessible fluidic environments. This work is part of a
European Union funded project entitled SOCIAL, (Self-
Organized societies of Connectionist Intelligent Agents
capable of Learning No IST-2001-38911). The project’s
aim is to produce a swarm of micro-scale (5cm3)
autonomous robots that, through indirect communication,
are capable of achieving fault detection and reparation in
difficult, challenging and inaccessible environments. An
application benchmark for this project is the on-line
monitoring and maintenance of underwater pipelines like
those found in the oil industry or desalination plants. The
robots would move through the fluidic environment,
continuously sensing for corrosion and scaling faults in
the pipeline.

Keywords: Spiking Neural Networks, Evolutionary
Robotics, FPGA, Hardware-in-the-Loop, Simulation.

1 Introduction
 The primary aim of the SOCIAL project is to
investigate methods for engineering emergent collective
behaviour in large societies of micro scale collaborative
autonomous robots that can learn and evolve. The robots
are viewed as independent individuals – having an
identical structure, yet able to exhibit varying behaviours –
capable of perceiving / exploring their environment,
selectively focusing attention, communicating with peers,
initiating and completing corrective tasks, and learning
both at the individual and communal levels. The use of
spiking neural networks (SNNs) allows the behaviours
associated with the robots to be evolved within a
simulation environment, allowing them to be studied and
verified before the robots are released into the physical
environment. This paper considers the benefits of using
spiking neural networks and describes the construction of
the development environment.

1.1 Spiking Neural Networks
 SNNs are deemed computationally more powerful
than conventional artificial neural network formalisms on
the basis of extensive theoretical work by Maass [1].
“Computationally more powerful” implies that SNNs need
fewer nodes to solve the same problem than conventional
artificial neural networks [1]. From an implementation
viewpoint, this means that SNN circuits of the same
complexity can provide “more for less” compared to other
neural network implementations (such as the multi layer
perceptrons). In addition, SNNs provide a number of other
desirable features such as noise-robustness (tolerance to
background noise) and simple real-world interfaces [2].
The computational power of SNNs exist because of the
intrinsic time-dependent dynamics of spiking neurons that
allow the temporal patterns of sensory-motor events to be
captured and exploited more efficiently than the other
connectionist models (i.e. with fewer neurons and simpler
circuits) [1], [3]. Moreover, SNNs can be mapped easily
to hardware because the spikes are in essence binary
events and the non linear dynamics and the coding of
spiking circuits can be provided by spiking times, rather
than by non linear, real valued activation functions used in
the traditional connectionist neuron models. In other
words, a few logic operations and instructions to move
around single bits over time would be sufficient to embed
large circuits of spiking neurons that display complex
abilities and behaviours into tiny and low power chips.
Therefore such SNNs will be appropriate control
mechanisms for our micro-scale autonomous robots as
they can give a very good response dealing with noise
using tiny chips that consume little power in inaccessible
environments. This is a big advantage especially as both
memory and power are extremely limited on the micro and
micro-scale platforms currently being developed by the
project.

 There have been many applications of SNNs to
robotics; most of these applications are focused on the first
stages of sensory processing and on relatively simple
motor control [4], [5]. Despite these interesting
implementations, they did not produce methods for

developing complex SNNs that could display minimal
cognitive functions or learn their behaviours through
autonomous interactions with the environment.
Implementations of SNNs are difficult as the hand design
of SNNs that display a desired functionality is not a trivial
task because of the highly non linear dynamics.
Furthermore, the learning algorithms developed for SNNs
are often restricted to very simple and application specific
architectures. Artificial evolution through Genetic
Algorithms (GAs) is therefore an interesting method to
discover SNNs. In our previous work [6] we introduced an
adaptive GA to evolve SNN controllers for robots.

1.2 Application
 One of the important technological problems in
secondary oil production is scale formation. The problem
varies in severity depending on the composition of the
water used during flooding. Scale deposits consisting
either of Calcium Carbonate or Calcium and Barium
Sulphate cause clogging in the pipes and damage to the
pumping systems. The process of calcium carbonate
formation is accompanied with proton release in the fluid
and subsequent pH drop. Calcium Carbonate deposits tend
to form around various nuclei of foreign material. Bulky
and tenaciously adhering calcium carbonate deposits are
formed in riser pipes used to control water levels in
secondary oil recovery processes. Moreover these deposits
are encountered in heater-treatment units, i.e. storage tanks
in which water is heated to be used to raise the
temperature of the produced fluids facilitating the
breakdown of water and oil emulsions in order to achieve
separation of the two fluids. The process of steam-
flooding of high-viscosity oil reservoirs also involves
heating water in tanks.

Figure 1 : Representation of the damage

 Hardness leakage through the ion exchangers usually
employed, in combination with the bicarbonates in water,
result in the formation of Calcium Carbonate scale that
causes a dramatic reduction of the heat transfer
coefficient. As a consequence the rupture of the high
pressure tubing has been reported. Investigations on the
formation of scale deposits in industrial systems indicate
that the slower the fluid velocity the more intense the
scaling problems. This is due to the formation of insoluble
salts like Calcium Carbonate [7]. As a consequence of the

formation of scale, local pH drops as one moves away
from the damage (see Figure 1).

1.3 Target Scenario
 The target scenario consists of agents circulating in
one compartment of the fluidic environment, continuously
sensing for “fault signals”. The “fault signal” (i.e. the
environmental stimulus that signals the presence of a
faulty element) will be an altered chemical/physical
property (i.e. pH/conductance). Using ISFET pH sensors,
robots are able to perceive any “fault signals”, and start
moving towards its source (i.e. the fault area)
simultaneously releasing a quorum sense1 signal, which
ultimately “attracts” other robots. Modulation of the
emission of the quorum sense signal is contingent upon the
local value of the fault and quorum sense fields, but also
critically depends on the path the individual robots have
traced in the environment as this is reflected in the spiking
history of the neurons that sense and actuate the generation
of the quorum sense field. As quorum signals are summed
more agents are eventually attracted towards the fault area;
when a quorum signal threshold is exceeded a spatio-
temporally ordered community is formed, which starts
repairing the fault. When robots repair the fault the
strength of the original environmental stimulus drops,
quorum signals diminish and hence the community
disperses.

The project’s main objectives are:

• Design and implement a generic modular agent
architecture that can be mapped to the physical
design of the tangible agents.

• Design and implement a Development
Environment for rapid prototyping and evaluation
of successive generations of robots.

• Design a life cycle model for robot development
and a methodology to realize it.

• Develop hybrid robots which will consist of
SNNs ported into FPGA hardware and the
necessary software to interface with the simulated
environment.

• Develop a robotic platform and a roadmap to its
miniaturisation.

1 Taken from biology, quorum sense is the phenomena that
allow a bacterium "to know" the number of bacteria of
certain species that are in its proximity based in the
accumulation of signalling molecules.

• Implement a proof-of-concept test bench using
bypass test tubing, to replicate aspects of fluidic
systems in the priority application, in order to
investigate in-situ behaviour of robots.

2 Development Methodology
 The robot development life-cycle model consists of
four stages: Specification, Implementation-Integration,
Simulation, and Evaluation-Evolution. In Specification, a
formal model capable of describing the topology and
execution of SNN (computational component) as well as
the sensor/actuator components has been defined. Based
on this formal model, a designer is able to define robot
controllers. This specification together with robot
morphology is compiled and VHDL or simulator language
instructions are produced. The generated code is then used
by the Simulator embedding the software version of the
controller into the virtual robot to test its performance in
the virtual environment. The generated VHDL can also be
compiled into FPGA boards that can then be tested in
simulation in order to verify the execution of SNNs in
hardware. The robot’s performance is then evaluated
according to measurement results and success criteria.
Controllers are then evolved and a candidate specification
is fed back into the cycle.

2.1 Development Environment
 An Integrated Development Environment platform
has been designed with the aim of producing a complete
solution for SNN robot controllers’ development, from the
specification to hardware implementation, covering all
intermediate stages such as simulation, evaluation and
real-time monitoring of prototyped hardware. An overview
of this environment, its modules as well as the inter-
module communication is depicted in Figure 2.

Figure 2 - Development Environment Architecture

 The robot’s morphology can be defined using the
Robot Editor which utilises a library of predefined sensors
and actuators. The Architecture Builder module enables
users to specify robot controllers based on a formal
specification according to a predefined morphology. The
Compiler then takes the specification from the
Architecture Builder and produces controllers in either
VHDL which is used to program the FPGA boards or
simulator code (SimL) integrating characteristics of the
targeted environment defined in the Mission Specification
module and gluing together the controller with simulated
robots.

 Hybrid societies (i.e. virtual robots and virtual robots
with hardware controllers) are then tested in benchmark
multi-agent task scenarios. During simulation, robots
develop certain skills according to their context and
experience and are thus no longer identical. In this
heterogeneous society, the Simulator measures a number
of success criteria and feeds them to the Evaluator module
for further processing. The Evaluator assesses each robot’s
performance in the targeted benchmark scenarios which
will entail the localization and repair of a failure in the
tube walls. Their collective performance is evaluated and a
new generation is specified with the use of evolutionary
algorithms. Evaluation criteria include the time to detect a
fault, time to amass the minimum number of robots
required to act collectively towards a solution, number of
sensors / actuators required per robot, etc.

2.2 Simulation and evaluation modules
 The Simulator and the Evaluator allow the user to
simulate, analyze, and evaluate prototyped robots. It plays
a key role in the development process. It allows designers
to learn more about the robot’s behaviour or to investigate
the potential of alternative architectures and researchers to
probe the relationships between robot-controller
architectures, behaviours and the environment.

Simulation supports robot development in different ways:

• Facilitating the development and evaluation of
different configurations. Robot morphology can
be tested under differing conditions before
committing to a particular design.

• Visualizing the whole model allows researchers
to concentrate on the general behaviour of the
system and contribute to the discussion and
conception of new ideas.

• Robot’s defective behaviour can be recognized
during simulation and it can be altered before the
hardware realization is implemented.

• Simulation helps to identify variables that are
essential for the development of accurate
behaviours and that have not been taken into
account.

 What follows is a description of a preliminary
implementation of the simulator. This model allows
developers to easily test different robot architectures (i.e.
defining different types of sensors, actuators, controllers
and their relationships) without affecting the core
components of the Simulator. The level of abstraction in
the interfaces allows a different robot configuration to be
benchmarked which is an essential feature for the
experimentation on new prototypes. Interfaces to
Actuator and Sensor classes have been kept as
simple as possible. This allows the developer to define
different types of sensors/actuators and their physical
characteristics without the necessity of re-implementing
other components or to be concerned about a particular
configuration of the environment. (i.e. robot controllers’
implementation is usually tightly coupled to sensors and
actuators). Entities with a physical representation inherit
most of the functionality from the SolidObject class
whose position and orientation is updated every time step
of simulation after applying environmental forces (i.e.
gravity, drag and buoyancy, etc) and internal forces (i.e.
accumulated actuators-force vectors). SolidObject
objects can be grouped together in tree-form structures
(i.e. parent-child relationships). This enables developers to
define components and glue them together in new robot
designs ready to be tested against environmental forces.

Figure 3 - Simulation and Evaluation modules

 The SimulatorController is in charge of
integrating forces defined in the environment and how
robots are affected by them including algorithms for
collision detection/response. It also manages the global
timer and provides functions to control its performance

throughout the simulation as well as generating log files to
be used as a measuring and debugging resource. The
Environment class holds information about all the
entities participating in the simulation and acts as a unique
entry point from which users can specify new
configurations to be simulated. Environment is
integrated with the Open Dynamics Engine (ODE)[8].
Based on Newtonian mechanics, the ODE handles masses
of arbitrary geometry updating the environment in discrete
time steps. The ODE provides support for collisions,
joints (restrictions of relative motion), second order
constraints, and friction.

 The EnvironmentView class is in charge of
rendering the graphics and the Graphical User Interface
(GUI). Robot is a generic class whose realisations
represent different types of robotic platforms.
Implemented robots are controlled using custom
implementations of the Controller class. In order to
simplify experimentation while testing new types of
sensors and actuators, users are required to implement
abstract classes Sensor and Actuator. Developers
need to write the code that emulates a specific sensor’s
functionality, obtaining information by querying the
Environment class. In the same way, users can
implement a particular type of actuator which will be able
to alter the internal state of the Environment class or
the Robot to which it belongs. The Controller class
provides hooks to the algorithms that supply the
functionality required to control robot’s performance
according to the SNN’s formal specification. The
SerialComm helper class provides serial communication
functionality allowing the interfacing of simulated robots
with hardware versions of SNN controllers. The
Genetic class is in charge of assigning fitness to specific
robot controller parameters, using these parameters to
evolve the controllers using Genetic Algorithms and
produce a number of possible parameter sets that allow the
robots to reach certain goals.

 ControllerParser is in charge of reading
Simulation Language (SimL) configuration files. These
are text files with an XML description of the SNN
controller that is automatically generated by the Compiler
(see Figure 2). Features described by these files are
mapped into Controller SNN modules integrating them
with the simulator. In the same way WorldParser takes
files representing environment features (i.e. features
dimension and location, fluid characteristics, etc) and
these are mapped to Environment attributes.

3 Hardware implementation
3.1 Preliminary tests: Integrating FPGA

based SNN controllers with prototyped
2D simulator

 As a first attempt to integrate hardware controllers
we evolved software SNNs within the real world,
translated them into VHDL and then downloaded them
into the prototyped hardware. Although the final platform
for the robot is within 3D space and these experiments
were carried out in a 2D space, this work represents an
important investigation into how SNN solutions,
regardless of the task they face, can be ported from
software into FPGA boards that will be used in the final
robotic platform. In order to compare SNN transferred
into hardware with their software counterpart, the results
from a series of wall following experiments were
compared with three different scenarios:

• Scenario 1: Software implementations of the
SNN running and evolved in a robot.

• Scenario 2: A hardware implementation of the
same controller interfaced with the simulator.

• Scenario 3: The same hardware implementation
running in the real robot.

 The C code along with the evolved parameters of the
wall following network trained in a real robot was
converted into VHDL and downloaded onto a FPGA
board. This process was made markedly easier by
producing lookup tables for the FPGA which saved a great
deal of computational work at run time. Much of the
physical structure of the spikes in the Spike Response
Model (SRM) was constant in terms of decay rates and
delays. Because FPGA devices are more suitable for fixed
point computation rather than floating point, look-up-
tables were used to store the height of the spike at a
particular time step, rather than dynamically computing
the spike response with the necessary floating point
arithmetic. Whilst this method involved a reduction in the
accuracy of plotting the spike curve, the complexity of the
lookup tables could be adjusted to meet the need of the
specific navigational problem being solved. The FPGA
was connected to the simulator and the robot using serial
communications. Once the FPGA was connected to the
simulator or secured to the robot, the experiments in
Scenario 1 were repeated with the same robot starting
point and layout of obstacles but using the FPGA as the
controller rather than the software SNN. By comparing the
log readings of scenarios 1 and 3 we intended to see what
quality, if any, was lost by transferring the SNN software
into hardware while comparing scenarios 1 and 2 allowed

us to verify the accuracy of hardware in the loop
simulation.

3.2 Component scaling
 The size of the core components in the development
system are shown in Figure 4 and by the end of the project
miniaturization within the range of 10-18mm is planned
focussing mainly on packaging and interconnections of
various hardware modules as well as power management
issues. The FPGA layer contains a Xilinx Spartan IIE
Field Programmable Gate Array (FPGA). The Spartan IIE
1.8V FPGA family gives high performance, abundant
logic resources, and a rich feature set. The device
integrated into the 25mm3 Printed Circuit Board (PCB)
series is the XC2S300E-7FG256. This is a mid-range
device with density of up to 300,000 system gates.
Features include dedicated block RAM, distributed RAM,
programmable I/O and DLLs (Delay-Locked Loops) for
minimization of clock skew.

Figure 4 - 25mm3 Core

 The module features an on board 4 MHz crystal
oscillator chosen to give a moderate processing rate while
conserving power. 1.8V and 3.3V low drop out power
supply regulators to provide the maximum module lifetime
from a coin cell battery attachment for the core and
LVTTL IO voltage requirements respectively. The module
also features an on-board Flash serial EPROM such that
the FPGA configuration memory is automatically
downloaded on power-up. The stackable connector system
used allows simple connectivity to other modules such as
the RF module, coin-cell power supply and sensor
modules. The current version of the 25mm
Communication layer consists of a fully integrated
frequency synthesizer, a power amplifier, a crystal
oscillator and a modulator (Nrf2401 Single chip 2.4GHz
Transceiver). Output power and frequency channels are
easily programmable. Current consumption is very low,
and a built-in Power Down mode makes power saving
easily realizable. The module also features an on board
antenna. The embedded microcontroller is based on the
ATmega128L, an 8-bit microcontroller with 128K bytes in
system programmable flash. This programmable

transceiver has been designed to connect with a separate
battery module and FPGA layer depending on the
configuration required.

 The Sensory layer is a wired communication and
sensor interface to the FPGA module. The current version
contains a dual channel RS232 transceiver, the Maxim
MAX3224ECAB in a small SSOP20 package enabling
wired serial communication with a PC for test purposes.
The module also contains two TLC549CD Analogue to
Digital (A to D) converters from Texas Instruments for
interfacing analogue sensors to the FPGA. The module
also allows interfacing to seven external sensors of the
type which change their resistance according to the
parameter being measured (e.g. light dependent resistors).
The necessary conditioning circuitry for the sensors
defined will be incorporated into a new version of this
PCB. In the Battery layer, coin cells may be used to
provide power to the 25mm3 system. A PCB has been
designed to directly interface coin cells using the stackable
connector system. A range of options exists for choice of
coin cell including support for 20mm and 24.5mm cells.
Single and double coin cell holders are also available. A
future revision of this module will provide power
management circuitry to prolong the lifetime of the
controller. The modules use a stackable connector system
to make the electrical and mechanical interconnections
between themselves. These high density interconnect have
0.5mm pitch and are available in range of interlayer
spacing from 5mm to 8mm to allow for different
component heights on the PCBs. The connectors facilitate
an 80 pin general purpose bus and a 40 pin bus for
configuration and data transfer between the modules. The
RF transceiver also has a 20 pin connector for 4 low noise
analogue input channels.

4 Conclusions
 In this paper, we have introduced SOCIAL’s
development architecture for SNN based controller
definition, simulation, evolution and testing. Inspired by
biological neural networks, SNNs provide a fast
processing system that provides tolerance to background
noise and can be mapped in small programs and thus
requires few logic operations and instructions to move
around single bits. Thus large SNNs can be embedded in
tiny and low power chips that can achieve complex tasks
and behaviours. This make them appropriate control
mechanisms for the micro-scale autonomous robots
developed by our project as they can give a very good
response when dealing with noisy, inaccessible
environments whilst consuming little power.

 A methodology for the development of controllers
with these characteristics was outlined together with a
description of the architecture of a simulation and
evaluation environment which allows us to train

controllers off line and download them into FPGA boards.
Finally, we include a description of the modules
implemented in a hardware prototype and consideration
towards miniaturization.

4.1 Acknowledgement
 We are pleased to acknowledge the funding support
from the EU Future and Emerging Technology programme
for the project entitled "Self-Organised Societies of
Connectionist Intelligent Agents capable of Learning ",
No IST-2001-38911. We are also pleased to acknowledge
our project partners: the University of Patras, Greece;
CTI, Greece and NMRC, Ireland.

References

[1] W. Maass, "Networks of spiking neurons: the third
generation of neural network models", Proc. Australian
Conference on Neural Networks, pp. 1-10, Apr. 1996.

[2] T. Lehmann and R. Woodburn, "Biologically-inspired
on-chip learning in pulsed neural networks", Analog
Integrated Circuits and Signal Processing, 2 ed., vol. 18.
pp. 117-131, Feb. 1998

[3] D. Floreano and C. Mattiussi, "Evolution of spiking
neural controllers for autonomous vision-based robots",
Proc. International Symposium on Evolutionary Robotics
(ER-2001), Berlin, pp. 38-61, Oct. 2001.

[4] M. A. Lewis, R. Etienne-Cummings, A. H. Cohen and
M. Hartmann, "Toward biomorphic control using custom
VLSI CPG chips", Proc. IEEE International Conference
on Robotics and Automation, San Francisco, pp. 494-500,
Apr. 2000.

[5] G. Indiveri, "Neuromorphic analog VLSI sensor for
visual tracking: circuits and application examples", IEEE
Trans.on Circuits and Systems II, 11 ed., vol. 46. pp.
1337-1347, Nov. 1999

[6] H. Hagras, A. Pounds-Cornish, M. Colley, V.
Callaghan and G. Clarke, "Evolving spiking neural
network controllers for autonomous robots", Proc. IEEE
International Conference on Robots and Automation, New
Orleans, pp. 4620-4626, Apr. 2004.

[7] J. C. Cowan and D. J. Weintritt, Water-formed scale
deposits, Gulf Pub. Co, Huston Texas, 1976

[8] R. Smith, "Open Dynamics Engine",
http://www.ode.org/, May 2004

